bert_uncased_L-12_H-256_A-4_emotion
This model is a fine-tuned version of google/bert_uncased_L-12_H-256_A-4 on the emotion dataset. It achieves the following results on the evaluation set:
- Loss: 0.1750
- Accuracy: 0.934
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 33
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.9309 | 1.0 | 250 | 0.4057 | 0.905 |
0.3116 | 2.0 | 500 | 0.2348 | 0.923 |
0.1956 | 3.0 | 750 | 0.1963 | 0.9285 |
0.148 | 4.0 | 1000 | 0.1792 | 0.9305 |
0.1257 | 5.0 | 1250 | 0.1750 | 0.934 |
0.1014 | 6.0 | 1500 | 0.1738 | 0.931 |
0.0866 | 7.0 | 1750 | 0.1846 | 0.9335 |
0.0758 | 8.0 | 2000 | 0.1987 | 0.93 |
0.0674 | 9.0 | 2250 | 0.1897 | 0.9315 |
0.0614 | 10.0 | 2500 | 0.1917 | 0.9335 |
Framework versions
- Transformers 4.34.0
- Pytorch 1.14.0a0+410ce96
- Datasets 2.14.5
- Tokenizers 0.14.1
- Downloads last month
- 7
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for gokuls/bert_uncased_L-12_H-256_A-4_emotion
Base model
google/bert_uncased_L-12_H-256_A-4