gokuls's picture
End of training
458e839
metadata
license: apache-2.0
base_model: google/bert_uncased_L-10_H-128_A-2
tags:
  - generated_from_trainer
datasets:
  - massive
metrics:
  - accuracy
model-index:
  - name: bert_uncased_L-10_H-128_A-2_massive
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: massive
          type: massive
          config: en-US
          split: validation
          args: en-US
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7466797835710772

bert_uncased_L-10_H-128_A-2_massive

This model is a fine-tuned version of google/bert_uncased_L-10_H-128_A-2 on the massive dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4064
  • Accuracy: 0.7467

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 33
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
3.8032 1.0 180 3.4795 0.3296
3.2716 2.0 360 2.9915 0.4491
2.8593 3.0 540 2.6360 0.5145
2.5442 4.0 720 2.3533 0.5765
2.296 5.0 900 2.1403 0.6006
2.0936 6.0 1080 1.9655 0.6463
1.9277 7.0 1260 1.8291 0.6719
1.7937 8.0 1440 1.7114 0.6911
1.6829 9.0 1620 1.6267 0.7088
1.5946 10.0 1800 1.5575 0.7231
1.5258 11.0 1980 1.4976 0.7354
1.4663 12.0 2160 1.4616 0.7364
1.4256 13.0 2340 1.4296 0.7437
1.3984 14.0 2520 1.4126 0.7442
1.3824 15.0 2700 1.4064 0.7467

Framework versions

  • Transformers 4.34.0
  • Pytorch 1.14.0a0+410ce96
  • Datasets 2.14.5
  • Tokenizers 0.14.1