my_distilbert_model / README.md
gokarn09's picture
Update README.md
6d0a47f verified
metadata
library_name: transformers
license: apache-2.0
base_model: distilbert-base-uncased
tags:
  - generated_from_trainer
  - NLP
  - Language-Model
  - Sentiment-Analysis
  - Analysis
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: my_distilbert_model
    results: []
datasets:
  - cornell-movie-review-data/rotten_tomatoes

my_distilbert_model

This model is a fine-tuned version of distilbert-base-uncased on an cornell-movie-review-data/rotten_tomatoes dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5379
  • Accuracy: 0.8424
  • F1: 0.8424
  • Precision: 0.8424
  • Recall: 0.8424

Model description

How to use the model

!pip install -q  transformers

from huggingface_hub import notebook_login
notebook_login()#after running this line enter the access token generated on your hugging face account

from transformers import AutoTokenizer, AutoModelForSequenceClassification

tokenizer = AutoTokenizer.from_pretrained("gokarn09/my_distilbert_model")
model = AutoModelForSequenceClassification.from_pretrained("gokarn09/my_distilbert_model")

from transformers import pipeline
text=["This is wonderful movie!", "The movie was really bad; I didn't like it."]
classifier = pipeline("sentiment-analysis", model="gokarn09/my_distilbert_model")
classifier(text)

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.4193 1.0 534 0.4263 0.8180 0.8162 0.8311 0.8180
0.2548 2.0 1068 0.4289 0.8377 0.8376 0.8383 0.8377
0.1582 3.0 1602 0.5379 0.8424 0.8424 0.8424 0.8424

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0