gemma-alpacha
yahma/alpaca-cleaned finetuned with gemma-7b-bnb-4bit
Usage
pip install "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
from unsloth import FastLanguageModel
model, tokenizer = FastLanguageModel.from_pretrained("gnumanth/gemma-unsloth-alpaca")
alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
{}
### Input:
{}
### Response:
{}"""
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
inputs = tokenizer(
[
alpaca_prompt.format(
"Give me a python code for quicksort", # instruction
"1,-1,0,8,9,-2,2", # input
"", # output - leave this blank for generation!
)
], return_tensors = "pt").to("cuda")
from transformers import TextStreamer
text_streamer = TextStreamer(tokenizer)
_ = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 128)
<bos>Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
Give me a python code for quicksort
### Input:
1,-1,0,8,9,-2,2
### Response:
def quicksort(arr):
if len(arr) <= 1:
return arr
pivot = arr[0]
left = [i for i in arr[1:] if i < pivot]
right = [i for i in arr[1:] if i >= pivot]
return quicksort(left) + [pivot] + quicksort(right)<eos>
Hemanth HMM | (Built with unsloth)
- Downloads last month
- 5
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for gnumanth/gemma-unsloth-alpaca
Base model
unsloth/gemma-7b-bnb-4bit