Version_weird_ASAP_FineTuningBERT_AugV12_k6_task1_organization_k6_k6_fold2
This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.6802
- Qwk: 0.6349
- Mse: 0.6798
- Rmse: 0.8245
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
---|---|---|---|---|---|---|
No log | 1.0 | 2 | 13.0928 | -0.0002 | 13.0932 | 3.6185 |
No log | 2.0 | 4 | 8.4118 | 0.0018 | 8.4122 | 2.9004 |
No log | 3.0 | 6 | 6.5166 | 0.0 | 6.5170 | 2.5528 |
No log | 4.0 | 8 | 6.3293 | 0.0 | 6.3296 | 2.5159 |
No log | 5.0 | 10 | 6.1797 | 0.0 | 6.1800 | 2.4860 |
No log | 6.0 | 12 | 5.9975 | -0.0035 | 5.9978 | 2.4490 |
No log | 7.0 | 14 | 5.7096 | 0.0 | 5.7099 | 2.3895 |
No log | 8.0 | 16 | 5.1896 | 0.0 | 5.1900 | 2.2782 |
No log | 9.0 | 18 | 4.6046 | 0.0 | 4.6050 | 2.1459 |
No log | 10.0 | 20 | 3.9474 | 0.0 | 3.9478 | 1.9869 |
No log | 11.0 | 22 | 3.4368 | 0.0 | 3.4372 | 1.8540 |
No log | 12.0 | 24 | 2.9808 | 0.0 | 2.9813 | 1.7266 |
No log | 13.0 | 26 | 2.3124 | 0.0981 | 2.3129 | 1.5208 |
No log | 14.0 | 28 | 1.8731 | 0.0910 | 1.8735 | 1.3688 |
No log | 15.0 | 30 | 1.6405 | 0.0727 | 1.6411 | 1.2810 |
No log | 16.0 | 32 | 1.1913 | 0.0241 | 1.1917 | 1.0917 |
No log | 17.0 | 34 | 1.0843 | 0.0399 | 1.0847 | 1.0415 |
No log | 18.0 | 36 | 0.8099 | 0.2838 | 0.8103 | 0.9001 |
No log | 19.0 | 38 | 0.7423 | 0.3698 | 0.7426 | 0.8617 |
No log | 20.0 | 40 | 0.6877 | 0.3649 | 0.6879 | 0.8294 |
No log | 21.0 | 42 | 0.6172 | 0.3423 | 0.6172 | 0.7856 |
No log | 22.0 | 44 | 0.5828 | 0.4426 | 0.5828 | 0.7634 |
No log | 23.0 | 46 | 0.6130 | 0.3845 | 0.6128 | 0.7828 |
No log | 24.0 | 48 | 0.6061 | 0.5110 | 0.6057 | 0.7783 |
No log | 25.0 | 50 | 0.5261 | 0.5484 | 0.5259 | 0.7252 |
No log | 26.0 | 52 | 0.5548 | 0.5754 | 0.5543 | 0.7445 |
No log | 27.0 | 54 | 0.7476 | 0.5464 | 0.7467 | 0.8641 |
No log | 28.0 | 56 | 0.5574 | 0.6118 | 0.5570 | 0.7463 |
No log | 29.0 | 58 | 1.0564 | 0.5366 | 1.0552 | 1.0272 |
No log | 30.0 | 60 | 0.7092 | 0.6182 | 0.7085 | 0.8417 |
No log | 31.0 | 62 | 0.9478 | 0.5750 | 0.9468 | 0.9730 |
No log | 32.0 | 64 | 0.6573 | 0.6295 | 0.6570 | 0.8105 |
No log | 33.0 | 66 | 0.8658 | 0.6047 | 0.8652 | 0.9302 |
No log | 34.0 | 68 | 0.6835 | 0.6287 | 0.6832 | 0.8266 |
No log | 35.0 | 70 | 0.6141 | 0.6418 | 0.6141 | 0.7836 |
No log | 36.0 | 72 | 1.0272 | 0.5596 | 1.0266 | 1.0132 |
No log | 37.0 | 74 | 0.7951 | 0.6114 | 0.7946 | 0.8914 |
No log | 38.0 | 76 | 0.5806 | 0.6252 | 0.5806 | 0.7620 |
No log | 39.0 | 78 | 1.0022 | 0.5622 | 1.0015 | 1.0007 |
No log | 40.0 | 80 | 0.9199 | 0.5602 | 0.9193 | 0.9588 |
No log | 41.0 | 82 | 0.5551 | 0.6618 | 0.5550 | 0.7450 |
No log | 42.0 | 84 | 0.7389 | 0.6142 | 0.7384 | 0.8593 |
No log | 43.0 | 86 | 0.6501 | 0.6313 | 0.6497 | 0.8060 |
No log | 44.0 | 88 | 0.7496 | 0.5517 | 0.7496 | 0.8658 |
No log | 45.0 | 90 | 0.6888 | 0.6186 | 0.6883 | 0.8297 |
No log | 46.0 | 92 | 0.7045 | 0.6212 | 0.7040 | 0.8390 |
No log | 47.0 | 94 | 0.5998 | 0.6555 | 0.5995 | 0.7743 |
No log | 48.0 | 96 | 0.9512 | 0.5630 | 0.9505 | 0.9749 |
No log | 49.0 | 98 | 0.9873 | 0.5547 | 0.9866 | 0.9933 |
No log | 50.0 | 100 | 0.5912 | 0.6430 | 0.5910 | 0.7688 |
No log | 51.0 | 102 | 0.6384 | 0.5928 | 0.6384 | 0.7990 |
No log | 52.0 | 104 | 0.6819 | 0.6274 | 0.6814 | 0.8255 |
No log | 53.0 | 106 | 0.8579 | 0.5785 | 0.8572 | 0.9259 |
No log | 54.0 | 108 | 0.5919 | 0.6542 | 0.5916 | 0.7692 |
No log | 55.0 | 110 | 0.6051 | 0.6597 | 0.6047 | 0.7777 |
No log | 56.0 | 112 | 0.8593 | 0.5877 | 0.8586 | 0.9266 |
No log | 57.0 | 114 | 0.7627 | 0.6084 | 0.7621 | 0.8730 |
No log | 58.0 | 116 | 0.5742 | 0.6477 | 0.5739 | 0.7576 |
No log | 59.0 | 118 | 0.7390 | 0.6085 | 0.7384 | 0.8593 |
No log | 60.0 | 120 | 0.7279 | 0.6152 | 0.7274 | 0.8529 |
No log | 61.0 | 122 | 0.5432 | 0.6668 | 0.5430 | 0.7369 |
No log | 62.0 | 124 | 0.5366 | 0.6612 | 0.5363 | 0.7323 |
No log | 63.0 | 126 | 0.8442 | 0.5733 | 0.8437 | 0.9186 |
No log | 64.0 | 128 | 1.0095 | 0.5361 | 1.0089 | 1.0044 |
No log | 65.0 | 130 | 0.6717 | 0.6307 | 0.6712 | 0.8193 |
No log | 66.0 | 132 | 0.5644 | 0.6653 | 0.5641 | 0.7511 |
No log | 67.0 | 134 | 0.6496 | 0.6421 | 0.6491 | 0.8057 |
No log | 68.0 | 136 | 0.7608 | 0.6086 | 0.7602 | 0.8719 |
No log | 69.0 | 138 | 0.6034 | 0.6465 | 0.6030 | 0.7765 |
No log | 70.0 | 140 | 0.6009 | 0.6497 | 0.6004 | 0.7749 |
No log | 71.0 | 142 | 0.7460 | 0.6083 | 0.7455 | 0.8634 |
No log | 72.0 | 144 | 0.6620 | 0.6418 | 0.6616 | 0.8134 |
No log | 73.0 | 146 | 0.5659 | 0.6617 | 0.5655 | 0.7520 |
No log | 74.0 | 148 | 0.6374 | 0.6420 | 0.6369 | 0.7981 |
No log | 75.0 | 150 | 0.8140 | 0.5834 | 0.8134 | 0.9019 |
No log | 76.0 | 152 | 0.7097 | 0.6246 | 0.7092 | 0.8422 |
No log | 77.0 | 154 | 0.5809 | 0.6631 | 0.5806 | 0.7620 |
No log | 78.0 | 156 | 0.5930 | 0.6558 | 0.5926 | 0.7698 |
No log | 79.0 | 158 | 0.6914 | 0.6366 | 0.6909 | 0.8312 |
No log | 80.0 | 160 | 0.6861 | 0.6329 | 0.6856 | 0.8280 |
No log | 81.0 | 162 | 0.6802 | 0.6349 | 0.6798 | 0.8245 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 7
Model tree for genki10/Version_weird_ASAP_FineTuningBERT_AugV12_k6_task1_organization_k6_k6_fold2
Base model
google-bert/bert-base-uncased