Version_weird_ASAP_FineTuningBERT_AugV12_k6_task1_organization_k6_k6_fold2

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6802
  • Qwk: 0.6349
  • Mse: 0.6798
  • Rmse: 0.8245

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Qwk Mse Rmse
No log 1.0 2 13.0928 -0.0002 13.0932 3.6185
No log 2.0 4 8.4118 0.0018 8.4122 2.9004
No log 3.0 6 6.5166 0.0 6.5170 2.5528
No log 4.0 8 6.3293 0.0 6.3296 2.5159
No log 5.0 10 6.1797 0.0 6.1800 2.4860
No log 6.0 12 5.9975 -0.0035 5.9978 2.4490
No log 7.0 14 5.7096 0.0 5.7099 2.3895
No log 8.0 16 5.1896 0.0 5.1900 2.2782
No log 9.0 18 4.6046 0.0 4.6050 2.1459
No log 10.0 20 3.9474 0.0 3.9478 1.9869
No log 11.0 22 3.4368 0.0 3.4372 1.8540
No log 12.0 24 2.9808 0.0 2.9813 1.7266
No log 13.0 26 2.3124 0.0981 2.3129 1.5208
No log 14.0 28 1.8731 0.0910 1.8735 1.3688
No log 15.0 30 1.6405 0.0727 1.6411 1.2810
No log 16.0 32 1.1913 0.0241 1.1917 1.0917
No log 17.0 34 1.0843 0.0399 1.0847 1.0415
No log 18.0 36 0.8099 0.2838 0.8103 0.9001
No log 19.0 38 0.7423 0.3698 0.7426 0.8617
No log 20.0 40 0.6877 0.3649 0.6879 0.8294
No log 21.0 42 0.6172 0.3423 0.6172 0.7856
No log 22.0 44 0.5828 0.4426 0.5828 0.7634
No log 23.0 46 0.6130 0.3845 0.6128 0.7828
No log 24.0 48 0.6061 0.5110 0.6057 0.7783
No log 25.0 50 0.5261 0.5484 0.5259 0.7252
No log 26.0 52 0.5548 0.5754 0.5543 0.7445
No log 27.0 54 0.7476 0.5464 0.7467 0.8641
No log 28.0 56 0.5574 0.6118 0.5570 0.7463
No log 29.0 58 1.0564 0.5366 1.0552 1.0272
No log 30.0 60 0.7092 0.6182 0.7085 0.8417
No log 31.0 62 0.9478 0.5750 0.9468 0.9730
No log 32.0 64 0.6573 0.6295 0.6570 0.8105
No log 33.0 66 0.8658 0.6047 0.8652 0.9302
No log 34.0 68 0.6835 0.6287 0.6832 0.8266
No log 35.0 70 0.6141 0.6418 0.6141 0.7836
No log 36.0 72 1.0272 0.5596 1.0266 1.0132
No log 37.0 74 0.7951 0.6114 0.7946 0.8914
No log 38.0 76 0.5806 0.6252 0.5806 0.7620
No log 39.0 78 1.0022 0.5622 1.0015 1.0007
No log 40.0 80 0.9199 0.5602 0.9193 0.9588
No log 41.0 82 0.5551 0.6618 0.5550 0.7450
No log 42.0 84 0.7389 0.6142 0.7384 0.8593
No log 43.0 86 0.6501 0.6313 0.6497 0.8060
No log 44.0 88 0.7496 0.5517 0.7496 0.8658
No log 45.0 90 0.6888 0.6186 0.6883 0.8297
No log 46.0 92 0.7045 0.6212 0.7040 0.8390
No log 47.0 94 0.5998 0.6555 0.5995 0.7743
No log 48.0 96 0.9512 0.5630 0.9505 0.9749
No log 49.0 98 0.9873 0.5547 0.9866 0.9933
No log 50.0 100 0.5912 0.6430 0.5910 0.7688
No log 51.0 102 0.6384 0.5928 0.6384 0.7990
No log 52.0 104 0.6819 0.6274 0.6814 0.8255
No log 53.0 106 0.8579 0.5785 0.8572 0.9259
No log 54.0 108 0.5919 0.6542 0.5916 0.7692
No log 55.0 110 0.6051 0.6597 0.6047 0.7777
No log 56.0 112 0.8593 0.5877 0.8586 0.9266
No log 57.0 114 0.7627 0.6084 0.7621 0.8730
No log 58.0 116 0.5742 0.6477 0.5739 0.7576
No log 59.0 118 0.7390 0.6085 0.7384 0.8593
No log 60.0 120 0.7279 0.6152 0.7274 0.8529
No log 61.0 122 0.5432 0.6668 0.5430 0.7369
No log 62.0 124 0.5366 0.6612 0.5363 0.7323
No log 63.0 126 0.8442 0.5733 0.8437 0.9186
No log 64.0 128 1.0095 0.5361 1.0089 1.0044
No log 65.0 130 0.6717 0.6307 0.6712 0.8193
No log 66.0 132 0.5644 0.6653 0.5641 0.7511
No log 67.0 134 0.6496 0.6421 0.6491 0.8057
No log 68.0 136 0.7608 0.6086 0.7602 0.8719
No log 69.0 138 0.6034 0.6465 0.6030 0.7765
No log 70.0 140 0.6009 0.6497 0.6004 0.7749
No log 71.0 142 0.7460 0.6083 0.7455 0.8634
No log 72.0 144 0.6620 0.6418 0.6616 0.8134
No log 73.0 146 0.5659 0.6617 0.5655 0.7520
No log 74.0 148 0.6374 0.6420 0.6369 0.7981
No log 75.0 150 0.8140 0.5834 0.8134 0.9019
No log 76.0 152 0.7097 0.6246 0.7092 0.8422
No log 77.0 154 0.5809 0.6631 0.5806 0.7620
No log 78.0 156 0.5930 0.6558 0.5926 0.7698
No log 79.0 158 0.6914 0.6366 0.6909 0.8312
No log 80.0 160 0.6861 0.6329 0.6856 0.8280
No log 81.0 162 0.6802 0.6349 0.6798 0.8245

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
7
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for genki10/Version_weird_ASAP_FineTuningBERT_AugV12_k6_task1_organization_k6_k6_fold2

Finetuned
(5701)
this model