Version_weird_ASAP_FineTuningBERT_AugV12_k6_task1_organization_k6_k6_fold0

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5022
  • Qwk: 0.6631
  • Mse: 0.5022
  • Rmse: 0.7086

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Qwk Mse Rmse
No log 1.0 2 9.0378 0.0 9.0378 3.0063
No log 2.0 4 7.6163 0.0 7.6163 2.7598
No log 3.0 6 6.8514 0.0 6.8514 2.6175
No log 4.0 8 5.8736 0.0176 5.8736 2.4236
No log 5.0 10 5.0356 0.0115 5.0356 2.2440
No log 6.0 12 4.3284 0.0077 4.3283 2.0805
No log 7.0 14 3.5191 0.0 3.5191 1.8759
No log 8.0 16 2.8177 0.0 2.8177 1.6786
No log 9.0 18 2.1729 0.0627 2.1729 1.4741
No log 10.0 20 1.6977 0.0316 1.6977 1.3030
No log 11.0 22 1.3287 0.0316 1.3287 1.1527
No log 12.0 24 1.0797 0.0212 1.0797 1.0391
No log 13.0 26 0.8893 0.0369 0.8893 0.9430
No log 14.0 28 0.7897 0.1890 0.7897 0.8887
No log 15.0 30 0.7172 0.2213 0.7172 0.8469
No log 16.0 32 0.7048 0.1601 0.7048 0.8395
No log 17.0 34 0.7532 0.1502 0.7532 0.8678
No log 18.0 36 0.6644 0.2309 0.6644 0.8151
No log 19.0 38 0.7882 0.2266 0.7882 0.8878
No log 20.0 40 0.5153 0.4030 0.5153 0.7179
No log 21.0 42 0.6083 0.5140 0.6083 0.7799
No log 22.0 44 0.5563 0.5369 0.5563 0.7458
No log 23.0 46 0.4657 0.6174 0.4657 0.6825
No log 24.0 48 0.8299 0.5097 0.8299 0.9110
No log 25.0 50 0.5265 0.6185 0.5265 0.7256
No log 26.0 52 0.5755 0.6341 0.5755 0.7586
No log 27.0 54 0.8338 0.5727 0.8338 0.9131
No log 28.0 56 0.8532 0.5793 0.8532 0.9237
No log 29.0 58 0.5393 0.6841 0.5393 0.7344
No log 30.0 60 0.6050 0.6644 0.6050 0.7778
No log 31.0 62 0.5241 0.6607 0.5241 0.7240
No log 32.0 64 0.4276 0.6692 0.4276 0.6539
No log 33.0 66 0.7041 0.5911 0.7041 0.8391
No log 34.0 68 0.5886 0.6291 0.5886 0.7672
No log 35.0 70 0.4463 0.6543 0.4463 0.6681
No log 36.0 72 0.4846 0.6587 0.4846 0.6962
No log 37.0 74 0.4471 0.6396 0.4471 0.6687
No log 38.0 76 0.4474 0.6426 0.4474 0.6689
No log 39.0 78 0.4680 0.6536 0.4680 0.6841
No log 40.0 80 0.4849 0.6515 0.4849 0.6963
No log 41.0 82 0.5514 0.6520 0.5514 0.7425
No log 42.0 84 0.5064 0.6539 0.5064 0.7116
No log 43.0 86 0.4408 0.6397 0.4408 0.6640
No log 44.0 88 0.5347 0.6456 0.5347 0.7312
No log 45.0 90 0.5150 0.6450 0.5150 0.7176
No log 46.0 92 0.4678 0.6528 0.4678 0.6840
No log 47.0 94 0.5120 0.6413 0.5120 0.7155
No log 48.0 96 0.4972 0.6530 0.4972 0.7051
No log 49.0 98 0.5022 0.6631 0.5022 0.7086

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
6
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for genki10/Version_weird_ASAP_FineTuningBERT_AugV12_k6_task1_organization_k6_k6_fold0

Finetuned
(5701)
this model