Version_weird_ASAP_FineTuningBERT_AugV12_k6_task1_organization_k6_k6_fold0
This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5022
- Qwk: 0.6631
- Mse: 0.5022
- Rmse: 0.7086
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
---|---|---|---|---|---|---|
No log | 1.0 | 2 | 9.0378 | 0.0 | 9.0378 | 3.0063 |
No log | 2.0 | 4 | 7.6163 | 0.0 | 7.6163 | 2.7598 |
No log | 3.0 | 6 | 6.8514 | 0.0 | 6.8514 | 2.6175 |
No log | 4.0 | 8 | 5.8736 | 0.0176 | 5.8736 | 2.4236 |
No log | 5.0 | 10 | 5.0356 | 0.0115 | 5.0356 | 2.2440 |
No log | 6.0 | 12 | 4.3284 | 0.0077 | 4.3283 | 2.0805 |
No log | 7.0 | 14 | 3.5191 | 0.0 | 3.5191 | 1.8759 |
No log | 8.0 | 16 | 2.8177 | 0.0 | 2.8177 | 1.6786 |
No log | 9.0 | 18 | 2.1729 | 0.0627 | 2.1729 | 1.4741 |
No log | 10.0 | 20 | 1.6977 | 0.0316 | 1.6977 | 1.3030 |
No log | 11.0 | 22 | 1.3287 | 0.0316 | 1.3287 | 1.1527 |
No log | 12.0 | 24 | 1.0797 | 0.0212 | 1.0797 | 1.0391 |
No log | 13.0 | 26 | 0.8893 | 0.0369 | 0.8893 | 0.9430 |
No log | 14.0 | 28 | 0.7897 | 0.1890 | 0.7897 | 0.8887 |
No log | 15.0 | 30 | 0.7172 | 0.2213 | 0.7172 | 0.8469 |
No log | 16.0 | 32 | 0.7048 | 0.1601 | 0.7048 | 0.8395 |
No log | 17.0 | 34 | 0.7532 | 0.1502 | 0.7532 | 0.8678 |
No log | 18.0 | 36 | 0.6644 | 0.2309 | 0.6644 | 0.8151 |
No log | 19.0 | 38 | 0.7882 | 0.2266 | 0.7882 | 0.8878 |
No log | 20.0 | 40 | 0.5153 | 0.4030 | 0.5153 | 0.7179 |
No log | 21.0 | 42 | 0.6083 | 0.5140 | 0.6083 | 0.7799 |
No log | 22.0 | 44 | 0.5563 | 0.5369 | 0.5563 | 0.7458 |
No log | 23.0 | 46 | 0.4657 | 0.6174 | 0.4657 | 0.6825 |
No log | 24.0 | 48 | 0.8299 | 0.5097 | 0.8299 | 0.9110 |
No log | 25.0 | 50 | 0.5265 | 0.6185 | 0.5265 | 0.7256 |
No log | 26.0 | 52 | 0.5755 | 0.6341 | 0.5755 | 0.7586 |
No log | 27.0 | 54 | 0.8338 | 0.5727 | 0.8338 | 0.9131 |
No log | 28.0 | 56 | 0.8532 | 0.5793 | 0.8532 | 0.9237 |
No log | 29.0 | 58 | 0.5393 | 0.6841 | 0.5393 | 0.7344 |
No log | 30.0 | 60 | 0.6050 | 0.6644 | 0.6050 | 0.7778 |
No log | 31.0 | 62 | 0.5241 | 0.6607 | 0.5241 | 0.7240 |
No log | 32.0 | 64 | 0.4276 | 0.6692 | 0.4276 | 0.6539 |
No log | 33.0 | 66 | 0.7041 | 0.5911 | 0.7041 | 0.8391 |
No log | 34.0 | 68 | 0.5886 | 0.6291 | 0.5886 | 0.7672 |
No log | 35.0 | 70 | 0.4463 | 0.6543 | 0.4463 | 0.6681 |
No log | 36.0 | 72 | 0.4846 | 0.6587 | 0.4846 | 0.6962 |
No log | 37.0 | 74 | 0.4471 | 0.6396 | 0.4471 | 0.6687 |
No log | 38.0 | 76 | 0.4474 | 0.6426 | 0.4474 | 0.6689 |
No log | 39.0 | 78 | 0.4680 | 0.6536 | 0.4680 | 0.6841 |
No log | 40.0 | 80 | 0.4849 | 0.6515 | 0.4849 | 0.6963 |
No log | 41.0 | 82 | 0.5514 | 0.6520 | 0.5514 | 0.7425 |
No log | 42.0 | 84 | 0.5064 | 0.6539 | 0.5064 | 0.7116 |
No log | 43.0 | 86 | 0.4408 | 0.6397 | 0.4408 | 0.6640 |
No log | 44.0 | 88 | 0.5347 | 0.6456 | 0.5347 | 0.7312 |
No log | 45.0 | 90 | 0.5150 | 0.6450 | 0.5150 | 0.7176 |
No log | 46.0 | 92 | 0.4678 | 0.6528 | 0.4678 | 0.6840 |
No log | 47.0 | 94 | 0.5120 | 0.6413 | 0.5120 | 0.7155 |
No log | 48.0 | 96 | 0.4972 | 0.6530 | 0.4972 | 0.7051 |
No log | 49.0 | 98 | 0.5022 | 0.6631 | 0.5022 | 0.7086 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 6
Model tree for genki10/Version_weird_ASAP_FineTuningBERT_AugV12_k6_task1_organization_k6_k6_fold0
Base model
google-bert/bert-base-uncased