Version_weird_ASAP_FineTuningBERT_AugV12_k4_task1_organization_k4_k4_fold0

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4921
  • Qwk: 0.6538
  • Mse: 0.4921
  • Rmse: 0.7015

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Qwk Mse Rmse
No log 1.0 2 9.0472 0.0 9.0472 3.0079
No log 2.0 4 7.9221 0.0 7.9221 2.8146
No log 3.0 6 6.8886 0.0 6.8886 2.6246
No log 4.0 8 6.3752 -0.0104 6.3752 2.5249
No log 5.0 10 5.3922 0.0115 5.3922 2.3221
No log 6.0 12 4.6700 0.0039 4.6700 2.1610
No log 7.0 14 3.8905 0.0 3.8905 1.9724
No log 8.0 16 3.2734 0.0 3.2734 1.8092
No log 9.0 18 2.5413 0.0249 2.5413 1.5942
No log 10.0 20 2.0803 0.0484 2.0803 1.4423
No log 11.0 22 1.5568 0.0316 1.5568 1.2477
No log 12.0 24 1.2682 0.0316 1.2682 1.1261
No log 13.0 26 1.0577 0.0316 1.0577 1.0285
No log 14.0 28 0.8903 0.0638 0.8903 0.9436
No log 15.0 30 0.7871 0.3488 0.7871 0.8872
No log 16.0 32 0.7494 0.1397 0.7494 0.8657
No log 17.0 34 0.7655 0.1291 0.7655 0.8749
No log 18.0 36 0.6677 0.2309 0.6677 0.8171
No log 19.0 38 0.6409 0.2436 0.6409 0.8006
No log 20.0 40 0.9014 0.1502 0.9014 0.9494
No log 21.0 42 0.9363 0.3003 0.9363 0.9676
No log 22.0 44 0.6304 0.4303 0.6304 0.7940
No log 23.0 46 0.7385 0.4585 0.7385 0.8593
No log 24.0 48 0.8764 0.4372 0.8764 0.9362
No log 25.0 50 0.5612 0.5366 0.5612 0.7491
No log 26.0 52 0.4955 0.6256 0.4955 0.7039
No log 27.0 54 0.6483 0.6093 0.6483 0.8052
No log 28.0 56 0.6415 0.6329 0.6415 0.8009
No log 29.0 58 0.5506 0.6534 0.5506 0.7420
No log 30.0 60 0.6163 0.6178 0.6163 0.7851
No log 31.0 62 0.4760 0.6746 0.4760 0.6899
No log 32.0 64 0.5253 0.6486 0.5253 0.7248
No log 33.0 66 0.6693 0.6318 0.6693 0.8181
No log 34.0 68 0.6420 0.6095 0.6420 0.8013
No log 35.0 70 0.6882 0.5755 0.6882 0.8296
No log 36.0 72 0.6548 0.6233 0.6548 0.8092
No log 37.0 74 0.7262 0.5965 0.7262 0.8522
No log 38.0 76 0.4442 0.6361 0.4442 0.6665
No log 39.0 78 0.4526 0.5938 0.4526 0.6728
No log 40.0 80 0.5555 0.6121 0.5555 0.7453
No log 41.0 82 0.6148 0.6028 0.6148 0.7841
No log 42.0 84 0.4387 0.6176 0.4387 0.6624
No log 43.0 86 0.4555 0.6156 0.4555 0.6749
No log 44.0 88 0.5768 0.6276 0.5768 0.7594
No log 45.0 90 0.6569 0.6274 0.6569 0.8105
No log 46.0 92 0.4778 0.6456 0.4778 0.6913
No log 47.0 94 0.4846 0.6254 0.4846 0.6962
No log 48.0 96 0.5414 0.6381 0.5414 0.7358
No log 49.0 98 0.6347 0.6042 0.6347 0.7967
No log 50.0 100 0.4861 0.6464 0.4861 0.6972
No log 51.0 102 0.4921 0.6538 0.4921 0.7015

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
6
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for genki10/Version_weird_ASAP_FineTuningBERT_AugV12_k4_task1_organization_k4_k4_fold0

Finetuned
(5701)
this model