Version_weird_ASAP_FineTuningBERT_AugV12_k4_task1_organization_k4_k4_fold0
This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4921
- Qwk: 0.6538
- Mse: 0.4921
- Rmse: 0.7015
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
---|---|---|---|---|---|---|
No log | 1.0 | 2 | 9.0472 | 0.0 | 9.0472 | 3.0079 |
No log | 2.0 | 4 | 7.9221 | 0.0 | 7.9221 | 2.8146 |
No log | 3.0 | 6 | 6.8886 | 0.0 | 6.8886 | 2.6246 |
No log | 4.0 | 8 | 6.3752 | -0.0104 | 6.3752 | 2.5249 |
No log | 5.0 | 10 | 5.3922 | 0.0115 | 5.3922 | 2.3221 |
No log | 6.0 | 12 | 4.6700 | 0.0039 | 4.6700 | 2.1610 |
No log | 7.0 | 14 | 3.8905 | 0.0 | 3.8905 | 1.9724 |
No log | 8.0 | 16 | 3.2734 | 0.0 | 3.2734 | 1.8092 |
No log | 9.0 | 18 | 2.5413 | 0.0249 | 2.5413 | 1.5942 |
No log | 10.0 | 20 | 2.0803 | 0.0484 | 2.0803 | 1.4423 |
No log | 11.0 | 22 | 1.5568 | 0.0316 | 1.5568 | 1.2477 |
No log | 12.0 | 24 | 1.2682 | 0.0316 | 1.2682 | 1.1261 |
No log | 13.0 | 26 | 1.0577 | 0.0316 | 1.0577 | 1.0285 |
No log | 14.0 | 28 | 0.8903 | 0.0638 | 0.8903 | 0.9436 |
No log | 15.0 | 30 | 0.7871 | 0.3488 | 0.7871 | 0.8872 |
No log | 16.0 | 32 | 0.7494 | 0.1397 | 0.7494 | 0.8657 |
No log | 17.0 | 34 | 0.7655 | 0.1291 | 0.7655 | 0.8749 |
No log | 18.0 | 36 | 0.6677 | 0.2309 | 0.6677 | 0.8171 |
No log | 19.0 | 38 | 0.6409 | 0.2436 | 0.6409 | 0.8006 |
No log | 20.0 | 40 | 0.9014 | 0.1502 | 0.9014 | 0.9494 |
No log | 21.0 | 42 | 0.9363 | 0.3003 | 0.9363 | 0.9676 |
No log | 22.0 | 44 | 0.6304 | 0.4303 | 0.6304 | 0.7940 |
No log | 23.0 | 46 | 0.7385 | 0.4585 | 0.7385 | 0.8593 |
No log | 24.0 | 48 | 0.8764 | 0.4372 | 0.8764 | 0.9362 |
No log | 25.0 | 50 | 0.5612 | 0.5366 | 0.5612 | 0.7491 |
No log | 26.0 | 52 | 0.4955 | 0.6256 | 0.4955 | 0.7039 |
No log | 27.0 | 54 | 0.6483 | 0.6093 | 0.6483 | 0.8052 |
No log | 28.0 | 56 | 0.6415 | 0.6329 | 0.6415 | 0.8009 |
No log | 29.0 | 58 | 0.5506 | 0.6534 | 0.5506 | 0.7420 |
No log | 30.0 | 60 | 0.6163 | 0.6178 | 0.6163 | 0.7851 |
No log | 31.0 | 62 | 0.4760 | 0.6746 | 0.4760 | 0.6899 |
No log | 32.0 | 64 | 0.5253 | 0.6486 | 0.5253 | 0.7248 |
No log | 33.0 | 66 | 0.6693 | 0.6318 | 0.6693 | 0.8181 |
No log | 34.0 | 68 | 0.6420 | 0.6095 | 0.6420 | 0.8013 |
No log | 35.0 | 70 | 0.6882 | 0.5755 | 0.6882 | 0.8296 |
No log | 36.0 | 72 | 0.6548 | 0.6233 | 0.6548 | 0.8092 |
No log | 37.0 | 74 | 0.7262 | 0.5965 | 0.7262 | 0.8522 |
No log | 38.0 | 76 | 0.4442 | 0.6361 | 0.4442 | 0.6665 |
No log | 39.0 | 78 | 0.4526 | 0.5938 | 0.4526 | 0.6728 |
No log | 40.0 | 80 | 0.5555 | 0.6121 | 0.5555 | 0.7453 |
No log | 41.0 | 82 | 0.6148 | 0.6028 | 0.6148 | 0.7841 |
No log | 42.0 | 84 | 0.4387 | 0.6176 | 0.4387 | 0.6624 |
No log | 43.0 | 86 | 0.4555 | 0.6156 | 0.4555 | 0.6749 |
No log | 44.0 | 88 | 0.5768 | 0.6276 | 0.5768 | 0.7594 |
No log | 45.0 | 90 | 0.6569 | 0.6274 | 0.6569 | 0.8105 |
No log | 46.0 | 92 | 0.4778 | 0.6456 | 0.4778 | 0.6913 |
No log | 47.0 | 94 | 0.4846 | 0.6254 | 0.4846 | 0.6962 |
No log | 48.0 | 96 | 0.5414 | 0.6381 | 0.5414 | 0.7358 |
No log | 49.0 | 98 | 0.6347 | 0.6042 | 0.6347 | 0.7967 |
No log | 50.0 | 100 | 0.4861 | 0.6464 | 0.4861 | 0.6972 |
No log | 51.0 | 102 | 0.4921 | 0.6538 | 0.4921 | 0.7015 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 6
Model tree for genki10/Version_weird_ASAP_FineTuningBERT_AugV12_k4_task1_organization_k4_k4_fold0
Base model
google-bert/bert-base-uncased