Version_weird_ASAP_FineTuningBERT_AugV12_k2_task1_organization_k2_k2_fold2

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9269
  • Qwk: 0.5687
  • Mse: 0.9258
  • Rmse: 0.9622

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Qwk Mse Rmse
No log 1.0 1 9.5826 0.0 9.5827 3.0956
No log 2.0 2 8.1019 0.0 8.1021 2.8464
No log 3.0 3 7.0890 0.0 7.0893 2.6626
No log 4.0 4 6.5413 0.0002 6.5416 2.5576
No log 5.0 5 5.6654 0.0374 5.6657 2.3803
No log 6.0 6 4.7095 0.0137 4.7098 2.1702
No log 7.0 7 4.1714 0.0039 4.1718 2.0425
No log 8.0 8 3.9079 0.0039 3.9084 1.9770
No log 9.0 9 3.4884 0.0 3.4889 1.8679
No log 10.0 10 2.9517 0.0 2.9521 1.7182
No log 11.0 11 2.4790 0.0695 2.4794 1.5746
No log 12.0 12 2.2214 0.1275 2.2219 1.4906
No log 13.0 13 2.0889 0.0780 2.0894 1.4455
No log 14.0 14 1.8506 0.0640 1.8511 1.3606
No log 15.0 15 1.5892 0.0345 1.5897 1.2608
No log 16.0 16 1.3664 0.0280 1.3669 1.1691
No log 17.0 17 1.2312 0.0107 1.2317 1.1098
No log 18.0 18 1.1326 0.0 1.1331 1.0645
No log 19.0 19 1.0391 0.0 1.0396 1.0196
No log 20.0 20 0.9524 0.0 0.9528 0.9761
No log 21.0 21 0.8858 0.0761 0.8862 0.9414
No log 22.0 22 0.8317 0.3785 0.8321 0.9122
No log 23.0 23 0.7889 0.2637 0.7893 0.8884
No log 24.0 24 0.7606 0.2243 0.7609 0.8723
No log 25.0 25 0.7347 0.2007 0.7350 0.8573
No log 26.0 26 0.7001 0.2579 0.7003 0.8368
No log 27.0 27 0.6637 0.2584 0.6638 0.8148
No log 28.0 28 0.6365 0.2852 0.6365 0.7978
No log 29.0 29 0.6118 0.3168 0.6118 0.7822
No log 30.0 30 0.5750 0.3775 0.5749 0.7582
No log 31.0 31 0.5576 0.4241 0.5574 0.7466
No log 32.0 32 0.5521 0.4237 0.5519 0.7429
No log 33.0 33 0.5575 0.4180 0.5571 0.7464
No log 34.0 34 0.5689 0.4515 0.5685 0.7540
No log 35.0 35 0.5867 0.5406 0.5863 0.7657
No log 36.0 36 0.6104 0.5939 0.6099 0.7809
No log 37.0 37 0.6447 0.5860 0.6441 0.8025
No log 38.0 38 0.6842 0.5894 0.6836 0.8268
No log 39.0 39 0.7334 0.5654 0.7327 0.8560
No log 40.0 40 0.7524 0.5550 0.7516 0.8669
No log 41.0 41 0.7649 0.5636 0.7641 0.8741
No log 42.0 42 0.7631 0.5626 0.7622 0.8730
No log 43.0 43 0.7599 0.5761 0.7590 0.8712
No log 44.0 44 0.7768 0.5606 0.7759 0.8808
No log 45.0 45 0.7729 0.5668 0.7719 0.8786
No log 46.0 46 0.7328 0.5666 0.7319 0.8555
No log 47.0 47 0.6977 0.5691 0.6968 0.8348
No log 48.0 48 0.6681 0.5726 0.6672 0.8168
No log 49.0 49 0.6563 0.5754 0.6555 0.8096
No log 50.0 50 0.6409 0.5806 0.6402 0.8001
No log 51.0 51 0.6811 0.5757 0.6802 0.8247
No log 52.0 52 0.7586 0.5693 0.7576 0.8704
No log 53.0 53 0.7173 0.5759 0.7164 0.8464
No log 54.0 54 0.7448 0.5870 0.7438 0.8624
No log 55.0 55 0.7868 0.5802 0.7857 0.8864
No log 56.0 56 0.7218 0.6065 0.7209 0.8490
No log 57.0 57 0.7231 0.5971 0.7221 0.8498
No log 58.0 58 0.7585 0.5925 0.7574 0.8703
No log 59.0 59 0.7140 0.6104 0.7130 0.8444
No log 60.0 60 0.7255 0.6000 0.7246 0.8512
No log 61.0 61 0.7136 0.6129 0.7127 0.8442
No log 62.0 62 0.7611 0.5876 0.7601 0.8718
No log 63.0 63 0.8556 0.5550 0.8545 0.9244
No log 64.0 64 0.8184 0.5765 0.8174 0.9041
No log 65.0 65 0.7805 0.5814 0.7795 0.8829
No log 66.0 66 0.7871 0.5810 0.7861 0.8866
No log 67.0 67 0.8941 0.5683 0.8930 0.9450
No log 68.0 68 0.9501 0.5569 0.9489 0.9741
No log 69.0 69 0.8779 0.5731 0.8768 0.9364
No log 70.0 70 0.8018 0.5944 0.8009 0.8949
No log 71.0 71 0.7825 0.5809 0.7816 0.8841
No log 72.0 72 0.8254 0.5841 0.8244 0.9080
No log 73.0 73 0.9340 0.5627 0.9328 0.9658
No log 74.0 74 0.9423 0.5650 0.9410 0.9701
No log 75.0 75 0.8716 0.5855 0.8705 0.9330
No log 76.0 76 0.8740 0.5832 0.8729 0.9343
No log 77.0 77 0.8652 0.5836 0.8641 0.9296
No log 78.0 78 0.8379 0.5841 0.8369 0.9148
No log 79.0 79 0.8459 0.5799 0.8449 0.9192
No log 80.0 80 0.8681 0.5825 0.8670 0.9311
No log 81.0 81 0.9269 0.5687 0.9258 0.9622

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
7
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for genki10/Version_weird_ASAP_FineTuningBERT_AugV12_k2_task1_organization_k2_k2_fold2

Finetuned
(5701)
this model