Version_weird_ASAP_FineTuningBERT_AugV12_k2_task1_organization_k2_k2_fold2
This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.9269
- Qwk: 0.5687
- Mse: 0.9258
- Rmse: 0.9622
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
---|---|---|---|---|---|---|
No log | 1.0 | 1 | 9.5826 | 0.0 | 9.5827 | 3.0956 |
No log | 2.0 | 2 | 8.1019 | 0.0 | 8.1021 | 2.8464 |
No log | 3.0 | 3 | 7.0890 | 0.0 | 7.0893 | 2.6626 |
No log | 4.0 | 4 | 6.5413 | 0.0002 | 6.5416 | 2.5576 |
No log | 5.0 | 5 | 5.6654 | 0.0374 | 5.6657 | 2.3803 |
No log | 6.0 | 6 | 4.7095 | 0.0137 | 4.7098 | 2.1702 |
No log | 7.0 | 7 | 4.1714 | 0.0039 | 4.1718 | 2.0425 |
No log | 8.0 | 8 | 3.9079 | 0.0039 | 3.9084 | 1.9770 |
No log | 9.0 | 9 | 3.4884 | 0.0 | 3.4889 | 1.8679 |
No log | 10.0 | 10 | 2.9517 | 0.0 | 2.9521 | 1.7182 |
No log | 11.0 | 11 | 2.4790 | 0.0695 | 2.4794 | 1.5746 |
No log | 12.0 | 12 | 2.2214 | 0.1275 | 2.2219 | 1.4906 |
No log | 13.0 | 13 | 2.0889 | 0.0780 | 2.0894 | 1.4455 |
No log | 14.0 | 14 | 1.8506 | 0.0640 | 1.8511 | 1.3606 |
No log | 15.0 | 15 | 1.5892 | 0.0345 | 1.5897 | 1.2608 |
No log | 16.0 | 16 | 1.3664 | 0.0280 | 1.3669 | 1.1691 |
No log | 17.0 | 17 | 1.2312 | 0.0107 | 1.2317 | 1.1098 |
No log | 18.0 | 18 | 1.1326 | 0.0 | 1.1331 | 1.0645 |
No log | 19.0 | 19 | 1.0391 | 0.0 | 1.0396 | 1.0196 |
No log | 20.0 | 20 | 0.9524 | 0.0 | 0.9528 | 0.9761 |
No log | 21.0 | 21 | 0.8858 | 0.0761 | 0.8862 | 0.9414 |
No log | 22.0 | 22 | 0.8317 | 0.3785 | 0.8321 | 0.9122 |
No log | 23.0 | 23 | 0.7889 | 0.2637 | 0.7893 | 0.8884 |
No log | 24.0 | 24 | 0.7606 | 0.2243 | 0.7609 | 0.8723 |
No log | 25.0 | 25 | 0.7347 | 0.2007 | 0.7350 | 0.8573 |
No log | 26.0 | 26 | 0.7001 | 0.2579 | 0.7003 | 0.8368 |
No log | 27.0 | 27 | 0.6637 | 0.2584 | 0.6638 | 0.8148 |
No log | 28.0 | 28 | 0.6365 | 0.2852 | 0.6365 | 0.7978 |
No log | 29.0 | 29 | 0.6118 | 0.3168 | 0.6118 | 0.7822 |
No log | 30.0 | 30 | 0.5750 | 0.3775 | 0.5749 | 0.7582 |
No log | 31.0 | 31 | 0.5576 | 0.4241 | 0.5574 | 0.7466 |
No log | 32.0 | 32 | 0.5521 | 0.4237 | 0.5519 | 0.7429 |
No log | 33.0 | 33 | 0.5575 | 0.4180 | 0.5571 | 0.7464 |
No log | 34.0 | 34 | 0.5689 | 0.4515 | 0.5685 | 0.7540 |
No log | 35.0 | 35 | 0.5867 | 0.5406 | 0.5863 | 0.7657 |
No log | 36.0 | 36 | 0.6104 | 0.5939 | 0.6099 | 0.7809 |
No log | 37.0 | 37 | 0.6447 | 0.5860 | 0.6441 | 0.8025 |
No log | 38.0 | 38 | 0.6842 | 0.5894 | 0.6836 | 0.8268 |
No log | 39.0 | 39 | 0.7334 | 0.5654 | 0.7327 | 0.8560 |
No log | 40.0 | 40 | 0.7524 | 0.5550 | 0.7516 | 0.8669 |
No log | 41.0 | 41 | 0.7649 | 0.5636 | 0.7641 | 0.8741 |
No log | 42.0 | 42 | 0.7631 | 0.5626 | 0.7622 | 0.8730 |
No log | 43.0 | 43 | 0.7599 | 0.5761 | 0.7590 | 0.8712 |
No log | 44.0 | 44 | 0.7768 | 0.5606 | 0.7759 | 0.8808 |
No log | 45.0 | 45 | 0.7729 | 0.5668 | 0.7719 | 0.8786 |
No log | 46.0 | 46 | 0.7328 | 0.5666 | 0.7319 | 0.8555 |
No log | 47.0 | 47 | 0.6977 | 0.5691 | 0.6968 | 0.8348 |
No log | 48.0 | 48 | 0.6681 | 0.5726 | 0.6672 | 0.8168 |
No log | 49.0 | 49 | 0.6563 | 0.5754 | 0.6555 | 0.8096 |
No log | 50.0 | 50 | 0.6409 | 0.5806 | 0.6402 | 0.8001 |
No log | 51.0 | 51 | 0.6811 | 0.5757 | 0.6802 | 0.8247 |
No log | 52.0 | 52 | 0.7586 | 0.5693 | 0.7576 | 0.8704 |
No log | 53.0 | 53 | 0.7173 | 0.5759 | 0.7164 | 0.8464 |
No log | 54.0 | 54 | 0.7448 | 0.5870 | 0.7438 | 0.8624 |
No log | 55.0 | 55 | 0.7868 | 0.5802 | 0.7857 | 0.8864 |
No log | 56.0 | 56 | 0.7218 | 0.6065 | 0.7209 | 0.8490 |
No log | 57.0 | 57 | 0.7231 | 0.5971 | 0.7221 | 0.8498 |
No log | 58.0 | 58 | 0.7585 | 0.5925 | 0.7574 | 0.8703 |
No log | 59.0 | 59 | 0.7140 | 0.6104 | 0.7130 | 0.8444 |
No log | 60.0 | 60 | 0.7255 | 0.6000 | 0.7246 | 0.8512 |
No log | 61.0 | 61 | 0.7136 | 0.6129 | 0.7127 | 0.8442 |
No log | 62.0 | 62 | 0.7611 | 0.5876 | 0.7601 | 0.8718 |
No log | 63.0 | 63 | 0.8556 | 0.5550 | 0.8545 | 0.9244 |
No log | 64.0 | 64 | 0.8184 | 0.5765 | 0.8174 | 0.9041 |
No log | 65.0 | 65 | 0.7805 | 0.5814 | 0.7795 | 0.8829 |
No log | 66.0 | 66 | 0.7871 | 0.5810 | 0.7861 | 0.8866 |
No log | 67.0 | 67 | 0.8941 | 0.5683 | 0.8930 | 0.9450 |
No log | 68.0 | 68 | 0.9501 | 0.5569 | 0.9489 | 0.9741 |
No log | 69.0 | 69 | 0.8779 | 0.5731 | 0.8768 | 0.9364 |
No log | 70.0 | 70 | 0.8018 | 0.5944 | 0.8009 | 0.8949 |
No log | 71.0 | 71 | 0.7825 | 0.5809 | 0.7816 | 0.8841 |
No log | 72.0 | 72 | 0.8254 | 0.5841 | 0.8244 | 0.9080 |
No log | 73.0 | 73 | 0.9340 | 0.5627 | 0.9328 | 0.9658 |
No log | 74.0 | 74 | 0.9423 | 0.5650 | 0.9410 | 0.9701 |
No log | 75.0 | 75 | 0.8716 | 0.5855 | 0.8705 | 0.9330 |
No log | 76.0 | 76 | 0.8740 | 0.5832 | 0.8729 | 0.9343 |
No log | 77.0 | 77 | 0.8652 | 0.5836 | 0.8641 | 0.9296 |
No log | 78.0 | 78 | 0.8379 | 0.5841 | 0.8369 | 0.9148 |
No log | 79.0 | 79 | 0.8459 | 0.5799 | 0.8449 | 0.9192 |
No log | 80.0 | 80 | 0.8681 | 0.5825 | 0.8670 | 0.9311 |
No log | 81.0 | 81 | 0.9269 | 0.5687 | 0.9258 | 0.9622 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 7
Model tree for genki10/Version_weird_ASAP_FineTuningBERT_AugV12_k2_task1_organization_k2_k2_fold2
Base model
google-bert/bert-base-uncased