Version_weird_ASAP_FineTuningBERT_AugV12_k10_task1_organization_k10_k10_fold3

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8226
  • Qwk: 0.5863
  • Mse: 0.8223
  • Rmse: 0.9068

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Qwk Mse Rmse
No log 1.0 3 9.6176 0.0 9.6157 3.1009
No log 2.0 6 9.0342 0.0 9.0324 3.0054
No log 3.0 9 7.6983 0.0 7.6968 2.7743
No log 4.0 12 6.2388 0.0050 6.2372 2.4974
No log 5.0 15 4.8576 0.0038 4.8565 2.2037
No log 6.0 18 3.6702 0.0 3.6692 1.9155
No log 7.0 21 3.0799 0.0 3.0788 1.7546
No log 8.0 24 2.4312 0.0864 2.4304 1.5590
No log 9.0 27 1.9404 0.0102 1.9397 1.3927
No log 10.0 30 1.5533 0.0 1.5526 1.2460
No log 11.0 33 1.2229 0.0 1.2224 1.1056
No log 12.0 36 1.0382 0.0 1.0378 1.0187
No log 13.0 39 0.9154 0.0641 0.9150 0.9566
No log 14.0 42 0.9088 0.0157 0.9086 0.9532
No log 15.0 45 0.9578 0.0157 0.9576 0.9786
No log 16.0 48 1.1753 0.0157 1.1753 1.0841
No log 17.0 51 1.5135 0.0999 1.5136 1.2303
No log 18.0 54 1.8952 0.0625 1.8953 1.3767
No log 19.0 57 2.3602 0.0732 2.3603 1.5363
No log 20.0 60 1.7138 0.2313 1.7135 1.3090
No log 21.0 63 0.7374 0.4815 0.7369 0.8584
No log 22.0 66 0.9549 0.5395 0.9539 0.9767
No log 23.0 69 1.5020 0.2868 1.5015 1.2253
No log 24.0 72 0.9024 0.5656 0.9020 0.9498
No log 25.0 75 0.8631 0.5901 0.8630 0.9290
No log 26.0 78 0.8089 0.5093 0.8093 0.8996
No log 27.0 81 1.0124 0.5700 1.0122 1.0061
No log 28.0 84 0.7005 0.5818 0.7008 0.8372
No log 29.0 87 1.4149 0.4832 1.4143 1.1892
No log 30.0 90 1.2705 0.5018 1.2701 1.1270
No log 31.0 93 0.6857 0.5888 0.6859 0.8282
No log 32.0 96 0.8176 0.5889 0.8175 0.9041
No log 33.0 99 0.7382 0.5364 0.7384 0.8593
No log 34.0 102 0.7541 0.5390 0.7543 0.8685
No log 35.0 105 0.8878 0.5836 0.8875 0.9421
No log 36.0 108 0.7505 0.6056 0.7505 0.8663
No log 37.0 111 0.8580 0.5944 0.8577 0.9261
No log 38.0 114 0.7840 0.5979 0.7839 0.8854
No log 39.0 117 1.0089 0.5661 1.0085 1.0042
No log 40.0 120 0.8573 0.5952 0.8572 0.9258
No log 41.0 123 0.9075 0.5916 0.9073 0.9525
No log 42.0 126 0.8167 0.5919 0.8166 0.9037
No log 43.0 129 0.9390 0.5661 0.9387 0.9688
No log 44.0 132 0.7460 0.5844 0.7460 0.8637
No log 45.0 135 0.8169 0.5906 0.8167 0.9037
No log 46.0 138 1.1277 0.5522 1.1271 1.0617
No log 47.0 141 1.0491 0.5633 1.0487 1.0240
No log 48.0 144 0.7677 0.6099 0.7677 0.8762
No log 49.0 147 0.8054 0.5937 0.8052 0.8974
No log 50.0 150 0.8206 0.5889 0.8204 0.9057
No log 51.0 153 1.0684 0.5532 1.0680 1.0334
No log 52.0 156 0.9359 0.5771 0.9355 0.9672
No log 53.0 159 0.8065 0.5328 0.8067 0.8982
No log 54.0 162 0.9316 0.5104 0.9319 0.9653
No log 55.0 165 0.8563 0.5599 0.8563 0.9254
No log 56.0 168 0.8735 0.5963 0.8732 0.9345
No log 57.0 171 0.7610 0.6016 0.7609 0.8723
No log 58.0 174 0.8378 0.6028 0.8376 0.9152
No log 59.0 177 0.7624 0.6259 0.7622 0.8731
No log 60.0 180 0.7651 0.6197 0.7649 0.8746
No log 61.0 183 0.9582 0.5623 0.9578 0.9787
No log 62.0 186 0.8779 0.5882 0.8777 0.9369
No log 63.0 189 0.7897 0.5961 0.7897 0.8886
No log 64.0 192 0.8434 0.5899 0.8433 0.9183
No log 65.0 195 0.9232 0.5976 0.9229 0.9607
No log 66.0 198 0.8557 0.6068 0.8554 0.9249
No log 67.0 201 0.7793 0.5991 0.7791 0.8827
No log 68.0 204 0.7721 0.6002 0.7720 0.8786
No log 69.0 207 0.8492 0.5981 0.8489 0.9214
No log 70.0 210 0.7710 0.6096 0.7708 0.8779
No log 71.0 213 0.7424 0.6124 0.7423 0.8616
No log 72.0 216 0.7876 0.6079 0.7874 0.8874
No log 73.0 219 0.8770 0.5981 0.8766 0.9363
No log 74.0 222 0.8134 0.5940 0.8131 0.9017
No log 75.0 225 0.7618 0.6071 0.7616 0.8727
No log 76.0 228 0.7517 0.6116 0.7515 0.8669
No log 77.0 231 0.7969 0.6057 0.7966 0.8925
No log 78.0 234 0.8091 0.5913 0.8088 0.8993
No log 79.0 237 0.8226 0.5863 0.8223 0.9068

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
6
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for genki10/Version_weird_ASAP_FineTuningBERT_AugV12_k10_task1_organization_k10_k10_fold3

Finetuned
(5704)
this model