Version_weird_ASAP_FineTuningBERT_AugV12_k10_task1_organization_k10_k10_fold3
This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.8226
- Qwk: 0.5863
- Mse: 0.8223
- Rmse: 0.9068
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
---|---|---|---|---|---|---|
No log | 1.0 | 3 | 9.6176 | 0.0 | 9.6157 | 3.1009 |
No log | 2.0 | 6 | 9.0342 | 0.0 | 9.0324 | 3.0054 |
No log | 3.0 | 9 | 7.6983 | 0.0 | 7.6968 | 2.7743 |
No log | 4.0 | 12 | 6.2388 | 0.0050 | 6.2372 | 2.4974 |
No log | 5.0 | 15 | 4.8576 | 0.0038 | 4.8565 | 2.2037 |
No log | 6.0 | 18 | 3.6702 | 0.0 | 3.6692 | 1.9155 |
No log | 7.0 | 21 | 3.0799 | 0.0 | 3.0788 | 1.7546 |
No log | 8.0 | 24 | 2.4312 | 0.0864 | 2.4304 | 1.5590 |
No log | 9.0 | 27 | 1.9404 | 0.0102 | 1.9397 | 1.3927 |
No log | 10.0 | 30 | 1.5533 | 0.0 | 1.5526 | 1.2460 |
No log | 11.0 | 33 | 1.2229 | 0.0 | 1.2224 | 1.1056 |
No log | 12.0 | 36 | 1.0382 | 0.0 | 1.0378 | 1.0187 |
No log | 13.0 | 39 | 0.9154 | 0.0641 | 0.9150 | 0.9566 |
No log | 14.0 | 42 | 0.9088 | 0.0157 | 0.9086 | 0.9532 |
No log | 15.0 | 45 | 0.9578 | 0.0157 | 0.9576 | 0.9786 |
No log | 16.0 | 48 | 1.1753 | 0.0157 | 1.1753 | 1.0841 |
No log | 17.0 | 51 | 1.5135 | 0.0999 | 1.5136 | 1.2303 |
No log | 18.0 | 54 | 1.8952 | 0.0625 | 1.8953 | 1.3767 |
No log | 19.0 | 57 | 2.3602 | 0.0732 | 2.3603 | 1.5363 |
No log | 20.0 | 60 | 1.7138 | 0.2313 | 1.7135 | 1.3090 |
No log | 21.0 | 63 | 0.7374 | 0.4815 | 0.7369 | 0.8584 |
No log | 22.0 | 66 | 0.9549 | 0.5395 | 0.9539 | 0.9767 |
No log | 23.0 | 69 | 1.5020 | 0.2868 | 1.5015 | 1.2253 |
No log | 24.0 | 72 | 0.9024 | 0.5656 | 0.9020 | 0.9498 |
No log | 25.0 | 75 | 0.8631 | 0.5901 | 0.8630 | 0.9290 |
No log | 26.0 | 78 | 0.8089 | 0.5093 | 0.8093 | 0.8996 |
No log | 27.0 | 81 | 1.0124 | 0.5700 | 1.0122 | 1.0061 |
No log | 28.0 | 84 | 0.7005 | 0.5818 | 0.7008 | 0.8372 |
No log | 29.0 | 87 | 1.4149 | 0.4832 | 1.4143 | 1.1892 |
No log | 30.0 | 90 | 1.2705 | 0.5018 | 1.2701 | 1.1270 |
No log | 31.0 | 93 | 0.6857 | 0.5888 | 0.6859 | 0.8282 |
No log | 32.0 | 96 | 0.8176 | 0.5889 | 0.8175 | 0.9041 |
No log | 33.0 | 99 | 0.7382 | 0.5364 | 0.7384 | 0.8593 |
No log | 34.0 | 102 | 0.7541 | 0.5390 | 0.7543 | 0.8685 |
No log | 35.0 | 105 | 0.8878 | 0.5836 | 0.8875 | 0.9421 |
No log | 36.0 | 108 | 0.7505 | 0.6056 | 0.7505 | 0.8663 |
No log | 37.0 | 111 | 0.8580 | 0.5944 | 0.8577 | 0.9261 |
No log | 38.0 | 114 | 0.7840 | 0.5979 | 0.7839 | 0.8854 |
No log | 39.0 | 117 | 1.0089 | 0.5661 | 1.0085 | 1.0042 |
No log | 40.0 | 120 | 0.8573 | 0.5952 | 0.8572 | 0.9258 |
No log | 41.0 | 123 | 0.9075 | 0.5916 | 0.9073 | 0.9525 |
No log | 42.0 | 126 | 0.8167 | 0.5919 | 0.8166 | 0.9037 |
No log | 43.0 | 129 | 0.9390 | 0.5661 | 0.9387 | 0.9688 |
No log | 44.0 | 132 | 0.7460 | 0.5844 | 0.7460 | 0.8637 |
No log | 45.0 | 135 | 0.8169 | 0.5906 | 0.8167 | 0.9037 |
No log | 46.0 | 138 | 1.1277 | 0.5522 | 1.1271 | 1.0617 |
No log | 47.0 | 141 | 1.0491 | 0.5633 | 1.0487 | 1.0240 |
No log | 48.0 | 144 | 0.7677 | 0.6099 | 0.7677 | 0.8762 |
No log | 49.0 | 147 | 0.8054 | 0.5937 | 0.8052 | 0.8974 |
No log | 50.0 | 150 | 0.8206 | 0.5889 | 0.8204 | 0.9057 |
No log | 51.0 | 153 | 1.0684 | 0.5532 | 1.0680 | 1.0334 |
No log | 52.0 | 156 | 0.9359 | 0.5771 | 0.9355 | 0.9672 |
No log | 53.0 | 159 | 0.8065 | 0.5328 | 0.8067 | 0.8982 |
No log | 54.0 | 162 | 0.9316 | 0.5104 | 0.9319 | 0.9653 |
No log | 55.0 | 165 | 0.8563 | 0.5599 | 0.8563 | 0.9254 |
No log | 56.0 | 168 | 0.8735 | 0.5963 | 0.8732 | 0.9345 |
No log | 57.0 | 171 | 0.7610 | 0.6016 | 0.7609 | 0.8723 |
No log | 58.0 | 174 | 0.8378 | 0.6028 | 0.8376 | 0.9152 |
No log | 59.0 | 177 | 0.7624 | 0.6259 | 0.7622 | 0.8731 |
No log | 60.0 | 180 | 0.7651 | 0.6197 | 0.7649 | 0.8746 |
No log | 61.0 | 183 | 0.9582 | 0.5623 | 0.9578 | 0.9787 |
No log | 62.0 | 186 | 0.8779 | 0.5882 | 0.8777 | 0.9369 |
No log | 63.0 | 189 | 0.7897 | 0.5961 | 0.7897 | 0.8886 |
No log | 64.0 | 192 | 0.8434 | 0.5899 | 0.8433 | 0.9183 |
No log | 65.0 | 195 | 0.9232 | 0.5976 | 0.9229 | 0.9607 |
No log | 66.0 | 198 | 0.8557 | 0.6068 | 0.8554 | 0.9249 |
No log | 67.0 | 201 | 0.7793 | 0.5991 | 0.7791 | 0.8827 |
No log | 68.0 | 204 | 0.7721 | 0.6002 | 0.7720 | 0.8786 |
No log | 69.0 | 207 | 0.8492 | 0.5981 | 0.8489 | 0.9214 |
No log | 70.0 | 210 | 0.7710 | 0.6096 | 0.7708 | 0.8779 |
No log | 71.0 | 213 | 0.7424 | 0.6124 | 0.7423 | 0.8616 |
No log | 72.0 | 216 | 0.7876 | 0.6079 | 0.7874 | 0.8874 |
No log | 73.0 | 219 | 0.8770 | 0.5981 | 0.8766 | 0.9363 |
No log | 74.0 | 222 | 0.8134 | 0.5940 | 0.8131 | 0.9017 |
No log | 75.0 | 225 | 0.7618 | 0.6071 | 0.7616 | 0.8727 |
No log | 76.0 | 228 | 0.7517 | 0.6116 | 0.7515 | 0.8669 |
No log | 77.0 | 231 | 0.7969 | 0.6057 | 0.7966 | 0.8925 |
No log | 78.0 | 234 | 0.8091 | 0.5913 | 0.8088 | 0.8993 |
No log | 79.0 | 237 | 0.8226 | 0.5863 | 0.8223 | 0.9068 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 6
Model tree for genki10/Version_weird_ASAP_FineTuningBERT_AugV12_k10_task1_organization_k10_k10_fold3
Base model
google-bert/bert-base-uncased