Version_concise_ASAP_FineTuningBERT_AugV12_k1_task1_organization_k1_k1_fold0

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6598
  • Qwk: 0.5736
  • Mse: 0.6598
  • Rmse: 0.8123

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Qwk Mse Rmse
No log 1.0 2 11.5529 0.0055 11.5529 3.3990
No log 2.0 4 9.4704 0.0 9.4704 3.0774
No log 3.0 6 7.5895 0.0 7.5895 2.7549
No log 4.0 8 5.9130 0.0472 5.9130 2.4317
No log 5.0 10 5.1158 0.0110 5.1158 2.2618
No log 6.0 12 3.7698 0.0039 3.7698 1.9416
No log 7.0 14 2.6405 0.0478 2.6405 1.6250
No log 8.0 16 1.9351 0.0538 1.9351 1.3911
No log 9.0 18 1.4629 0.0316 1.4629 1.2095
No log 10.0 20 1.4752 0.0316 1.4752 1.2146
No log 11.0 22 1.2365 0.0316 1.2365 1.1120
No log 12.0 24 1.1313 0.0316 1.1313 1.0636
No log 13.0 26 1.0640 0.0316 1.0640 1.0315
No log 14.0 28 1.0830 0.0487 1.0830 1.0407
No log 15.0 30 0.9791 0.0718 0.9791 0.9895
No log 16.0 32 1.1047 0.0928 1.1047 1.0511
No log 17.0 34 0.9156 0.1778 0.9156 0.9569
No log 18.0 36 0.6391 0.4836 0.6391 0.7994
No log 19.0 38 0.7379 0.3168 0.7379 0.8590
No log 20.0 40 0.8730 0.2701 0.8730 0.9344
No log 21.0 42 0.7774 0.4196 0.7774 0.8817
No log 22.0 44 0.5520 0.4868 0.5520 0.7430
No log 23.0 46 0.5726 0.4091 0.5726 0.7567
No log 24.0 48 0.5912 0.4778 0.5912 0.7689
No log 25.0 50 0.5544 0.5032 0.5544 0.7446
No log 26.0 52 0.5316 0.4718 0.5316 0.7291
No log 27.0 54 0.5302 0.4818 0.5302 0.7281
No log 28.0 56 0.5377 0.5397 0.5377 0.7333
No log 29.0 58 0.5687 0.5643 0.5687 0.7541
No log 30.0 60 0.5817 0.5875 0.5817 0.7627
No log 31.0 62 0.6247 0.5742 0.6247 0.7904
No log 32.0 64 0.7362 0.5307 0.7362 0.8580
No log 33.0 66 0.5917 0.6028 0.5917 0.7692
No log 34.0 68 0.7799 0.4881 0.7799 0.8831
No log 35.0 70 0.7614 0.4977 0.7614 0.8726
No log 36.0 72 0.6090 0.5636 0.6090 0.7804
No log 37.0 74 0.7372 0.5131 0.7372 0.8586
No log 38.0 76 0.7896 0.4906 0.7896 0.8886
No log 39.0 78 0.9483 0.4421 0.9483 0.9738
No log 40.0 80 0.7386 0.5205 0.7386 0.8594
No log 41.0 82 0.6317 0.5810 0.6317 0.7948
No log 42.0 84 0.7339 0.5645 0.7339 0.8567
No log 43.0 86 0.6883 0.5734 0.6883 0.8297
No log 44.0 88 0.6442 0.5718 0.6442 0.8026
No log 45.0 90 0.6427 0.5816 0.6427 0.8017
No log 46.0 92 0.9847 0.4921 0.9847 0.9923
No log 47.0 94 0.9873 0.4834 0.9873 0.9936
No log 48.0 96 0.6410 0.5596 0.6410 0.8006
No log 49.0 98 0.6275 0.5564 0.6275 0.7922
No log 50.0 100 0.7396 0.5338 0.7396 0.8600
No log 51.0 102 0.7818 0.5447 0.7818 0.8842
No log 52.0 104 0.6483 0.5825 0.6483 0.8052
No log 53.0 106 0.6598 0.5736 0.6598 0.8123

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
6
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for genki10/Version_concise_ASAP_FineTuningBERT_AugV12_k1_task1_organization_k1_k1_fold0

Finetuned
(5703)
this model