Version_concise_ASAP_FineTuningBERT_AugV12_k1_task1_organization_k1_k1_fold0
This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.6598
- Qwk: 0.5736
- Mse: 0.6598
- Rmse: 0.8123
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
---|---|---|---|---|---|---|
No log | 1.0 | 2 | 11.5529 | 0.0055 | 11.5529 | 3.3990 |
No log | 2.0 | 4 | 9.4704 | 0.0 | 9.4704 | 3.0774 |
No log | 3.0 | 6 | 7.5895 | 0.0 | 7.5895 | 2.7549 |
No log | 4.0 | 8 | 5.9130 | 0.0472 | 5.9130 | 2.4317 |
No log | 5.0 | 10 | 5.1158 | 0.0110 | 5.1158 | 2.2618 |
No log | 6.0 | 12 | 3.7698 | 0.0039 | 3.7698 | 1.9416 |
No log | 7.0 | 14 | 2.6405 | 0.0478 | 2.6405 | 1.6250 |
No log | 8.0 | 16 | 1.9351 | 0.0538 | 1.9351 | 1.3911 |
No log | 9.0 | 18 | 1.4629 | 0.0316 | 1.4629 | 1.2095 |
No log | 10.0 | 20 | 1.4752 | 0.0316 | 1.4752 | 1.2146 |
No log | 11.0 | 22 | 1.2365 | 0.0316 | 1.2365 | 1.1120 |
No log | 12.0 | 24 | 1.1313 | 0.0316 | 1.1313 | 1.0636 |
No log | 13.0 | 26 | 1.0640 | 0.0316 | 1.0640 | 1.0315 |
No log | 14.0 | 28 | 1.0830 | 0.0487 | 1.0830 | 1.0407 |
No log | 15.0 | 30 | 0.9791 | 0.0718 | 0.9791 | 0.9895 |
No log | 16.0 | 32 | 1.1047 | 0.0928 | 1.1047 | 1.0511 |
No log | 17.0 | 34 | 0.9156 | 0.1778 | 0.9156 | 0.9569 |
No log | 18.0 | 36 | 0.6391 | 0.4836 | 0.6391 | 0.7994 |
No log | 19.0 | 38 | 0.7379 | 0.3168 | 0.7379 | 0.8590 |
No log | 20.0 | 40 | 0.8730 | 0.2701 | 0.8730 | 0.9344 |
No log | 21.0 | 42 | 0.7774 | 0.4196 | 0.7774 | 0.8817 |
No log | 22.0 | 44 | 0.5520 | 0.4868 | 0.5520 | 0.7430 |
No log | 23.0 | 46 | 0.5726 | 0.4091 | 0.5726 | 0.7567 |
No log | 24.0 | 48 | 0.5912 | 0.4778 | 0.5912 | 0.7689 |
No log | 25.0 | 50 | 0.5544 | 0.5032 | 0.5544 | 0.7446 |
No log | 26.0 | 52 | 0.5316 | 0.4718 | 0.5316 | 0.7291 |
No log | 27.0 | 54 | 0.5302 | 0.4818 | 0.5302 | 0.7281 |
No log | 28.0 | 56 | 0.5377 | 0.5397 | 0.5377 | 0.7333 |
No log | 29.0 | 58 | 0.5687 | 0.5643 | 0.5687 | 0.7541 |
No log | 30.0 | 60 | 0.5817 | 0.5875 | 0.5817 | 0.7627 |
No log | 31.0 | 62 | 0.6247 | 0.5742 | 0.6247 | 0.7904 |
No log | 32.0 | 64 | 0.7362 | 0.5307 | 0.7362 | 0.8580 |
No log | 33.0 | 66 | 0.5917 | 0.6028 | 0.5917 | 0.7692 |
No log | 34.0 | 68 | 0.7799 | 0.4881 | 0.7799 | 0.8831 |
No log | 35.0 | 70 | 0.7614 | 0.4977 | 0.7614 | 0.8726 |
No log | 36.0 | 72 | 0.6090 | 0.5636 | 0.6090 | 0.7804 |
No log | 37.0 | 74 | 0.7372 | 0.5131 | 0.7372 | 0.8586 |
No log | 38.0 | 76 | 0.7896 | 0.4906 | 0.7896 | 0.8886 |
No log | 39.0 | 78 | 0.9483 | 0.4421 | 0.9483 | 0.9738 |
No log | 40.0 | 80 | 0.7386 | 0.5205 | 0.7386 | 0.8594 |
No log | 41.0 | 82 | 0.6317 | 0.5810 | 0.6317 | 0.7948 |
No log | 42.0 | 84 | 0.7339 | 0.5645 | 0.7339 | 0.8567 |
No log | 43.0 | 86 | 0.6883 | 0.5734 | 0.6883 | 0.8297 |
No log | 44.0 | 88 | 0.6442 | 0.5718 | 0.6442 | 0.8026 |
No log | 45.0 | 90 | 0.6427 | 0.5816 | 0.6427 | 0.8017 |
No log | 46.0 | 92 | 0.9847 | 0.4921 | 0.9847 | 0.9923 |
No log | 47.0 | 94 | 0.9873 | 0.4834 | 0.9873 | 0.9936 |
No log | 48.0 | 96 | 0.6410 | 0.5596 | 0.6410 | 0.8006 |
No log | 49.0 | 98 | 0.6275 | 0.5564 | 0.6275 | 0.7922 |
No log | 50.0 | 100 | 0.7396 | 0.5338 | 0.7396 | 0.8600 |
No log | 51.0 | 102 | 0.7818 | 0.5447 | 0.7818 | 0.8842 |
No log | 52.0 | 104 | 0.6483 | 0.5825 | 0.6483 | 0.8052 |
No log | 53.0 | 106 | 0.6598 | 0.5736 | 0.6598 | 0.8123 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 6
Model tree for genki10/Version_concise_ASAP_FineTuningBERT_AugV12_k1_task1_organization_k1_k1_fold0
Base model
google-bert/bert-base-uncased