|
--- |
|
language: [] |
|
library_name: sentence-transformers |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:7005 |
|
- loss:MultipleNegativesRankingLoss_with_logging |
|
base_model: Alibaba-NLP/gte-large-en-v1.5 |
|
datasets: [] |
|
metrics: |
|
- cosine_accuracy@1 |
|
- cosine_accuracy@3 |
|
- cosine_accuracy@5 |
|
- cosine_accuracy@10 |
|
- cosine_accuracy@30 |
|
- cosine_accuracy@50 |
|
- cosine_accuracy@100 |
|
- cosine_precision@1 |
|
- cosine_precision@3 |
|
- cosine_precision@5 |
|
- cosine_precision@10 |
|
- cosine_precision@30 |
|
- cosine_precision@50 |
|
- cosine_precision@100 |
|
- cosine_recall@1 |
|
- cosine_recall@3 |
|
- cosine_recall@5 |
|
- cosine_recall@10 |
|
- cosine_recall@30 |
|
- cosine_recall@50 |
|
- cosine_recall@100 |
|
- cosine_ndcg@10 |
|
- cosine_mrr@10 |
|
- cosine_map@100 |
|
- dot_accuracy@1 |
|
- dot_accuracy@3 |
|
- dot_accuracy@5 |
|
- dot_accuracy@10 |
|
- dot_accuracy@30 |
|
- dot_accuracy@50 |
|
- dot_accuracy@100 |
|
- dot_precision@1 |
|
- dot_precision@3 |
|
- dot_precision@5 |
|
- dot_precision@10 |
|
- dot_precision@30 |
|
- dot_precision@50 |
|
- dot_precision@100 |
|
- dot_recall@1 |
|
- dot_recall@3 |
|
- dot_recall@5 |
|
- dot_recall@10 |
|
- dot_recall@30 |
|
- dot_recall@50 |
|
- dot_recall@100 |
|
- dot_ndcg@10 |
|
- dot_mrr@10 |
|
- dot_map@100 |
|
widget: |
|
- source_sentence: What are the client's target industries? |
|
sentences: |
|
- 'Right. |
|
|
|
And also, you know, heavy equipment. |
|
|
|
Okay, I understand.' |
|
- 'And there''s a full spectrum. |
|
|
|
It''s all about your order offering. |
|
|
|
Right. |
|
|
|
If you''re offering, like, a full design platform where now we have way more engagement |
|
in terms of employee being able to get it from one place, and that could be. |
|
|
|
That could take away again, like, my pitch would be basically being on the show.' |
|
- 'Our competitors are billion dollar corporations. |
|
|
|
So Experian Epsilon, which is owned by IPG or publicis, big french company, Axiom, |
|
which is owned by IPG. |
|
|
|
Inter public group, huge agency. |
|
|
|
So it''s nice competing against multibillion dollar corporations because they |
|
move at the speed of the Statue of Liberty.' |
|
- source_sentence: What is the strategy for heating products? |
|
sentences: |
|
- 'Then when you go in to take a look, you say, okay, I''ve got this. |
|
|
|
Now I need to record my test results so that we do down here. |
|
|
|
And we say, okay, this is me, so I''ll pick myself. |
|
|
|
And here we go. |
|
|
|
So once you''re in here, you say, okay, it''s inspector me.' |
|
- 'I don''t think we make any margin on these products. |
|
|
|
I''m going to put it on here, though, because I want to add different ones. |
|
|
|
So three in one and then. |
|
|
|
Underfloor heating?' |
|
- 'How are others using it? |
|
|
|
Use cases like. |
|
|
|
Yeah, for example, we have one, one partner, there''s climbo.' |
|
- source_sentence: What feature did Aseel request regarding budget information display? |
|
sentences: |
|
- 'So you want to do your west coast. |
|
|
|
Do you want to do 10:00 a.m. |
|
|
|
on the morning of 13th?' |
|
- 'But the only thing that I just was thinking about is, for example, if I was a |
|
head teacher and I''m about to approve an order and obviously I go and click on |
|
the three dots and it tells me my geo budget department by GL budget and obviously |
|
tells you what your total budget is, your spend and what''s remaining. |
|
|
|
Is there a way in which I can see what actually went under proof expenditure? |
|
|
|
So it should be. |
|
|
|
So to see how much has been committed against the budget?' |
|
- 'Awesome. |
|
|
|
And speaking of releases, is there any way I''m not getting the. |
|
|
|
And I''m sure Chris probably is.' |
|
- source_sentence: Does the customer have any other EAP-like resources available? |
|
sentences: |
|
- 'Every time I make a post, I get. |
|
|
|
I get just a ton of inquiries, you know? |
|
|
|
And we''re just. |
|
|
|
We''re doing a bunch of cool operational stuff right now, so we''re just trying |
|
to get that all figured out, you know? |
|
|
|
Yeah. |
|
|
|
Well, hey, let me give you a rundown of a couple things I''m doing with, like, |
|
people in your kind of peripheral. |
|
|
|
Just so you know what we''re trying to do to boost the voices of you and agencies |
|
like you.' |
|
- 'So we need Kim and Manju. |
|
|
|
We need to account that for production downtime for on 16th. |
|
|
|
No cutover plan.' |
|
- 'They''re thinking, well, there we have them already, and they offer all these |
|
things. |
|
|
|
This is pretty great, you know, because we also use, so we have Voya life insurance, |
|
and through Voya, they offer a couple eap type of resources, too. |
|
|
|
Right. |
|
|
|
So we have additional assistance with another program. |
|
|
|
Right. |
|
|
|
But with our eap, which is through Magellan, they would just usually would just |
|
be better than the other comparisons when it came down to it.' |
|
- source_sentence: What was Nathan's response to the initial proposal from Global |
|
Air U? |
|
sentences: |
|
- But I was listening to everything that you were talking about. |
|
- 'And hopefully that should update now in your account in a second. |
|
|
|
Yeah. |
|
|
|
If you give that a go now, you should see all the way to August 2025.' |
|
- 'I don''t see on the proposal. |
|
|
|
I don''t see anything class or the class related. |
|
|
|
Um. |
|
|
|
Oh, so for the course. |
|
|
|
No, no.' |
|
pipeline_tag: sentence-similarity |
|
model-index: |
|
- name: SentenceTransformer based on Alibaba-NLP/gte-large-en-v1.5 |
|
results: |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: Unknown |
|
type: unknown |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.32793959007551243 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.48975188781014023 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.5663430420711975 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.6612729234088457 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_accuracy@30 |
|
value: 0.7669902912621359 |
|
name: Cosine Accuracy@30 |
|
- type: cosine_accuracy@50 |
|
value: 0.8155339805825242 |
|
name: Cosine Accuracy@50 |
|
- type: cosine_accuracy@100 |
|
value: 0.8597626752966558 |
|
name: Cosine Accuracy@100 |
|
- type: cosine_precision@1 |
|
value: 0.32793959007551243 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.1902193455591514 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.13829557713052856 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.08716289104638619 |
|
name: Cosine Precision@10 |
|
- type: cosine_precision@30 |
|
value: 0.038439410284070476 |
|
name: Cosine Precision@30 |
|
- type: cosine_precision@50 |
|
value: 0.025717367853290186 |
|
name: Cosine Precision@50 |
|
- type: cosine_precision@100 |
|
value: 0.014282632146709814 |
|
name: Cosine Precision@100 |
|
- type: cosine_recall@1 |
|
value: 0.19877399359600004 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.32606462218112703 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.39100529100529097 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.475571479940412 |
|
name: Cosine Recall@10 |
|
- type: cosine_recall@30 |
|
value: 0.6031369325867708 |
|
name: Cosine Recall@30 |
|
- type: cosine_recall@50 |
|
value: 0.660217290799815 |
|
name: Cosine Recall@50 |
|
- type: cosine_recall@100 |
|
value: 0.7195099398982894 |
|
name: Cosine Recall@100 |
|
- type: cosine_ndcg@10 |
|
value: 0.3784769275629581 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.42950420369514186 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.3193224907975288 |
|
name: Cosine Map@100 |
|
- type: dot_accuracy@1 |
|
value: 0.3290183387270766 |
|
name: Dot Accuracy@1 |
|
- type: dot_accuracy@3 |
|
value: 0.4886731391585761 |
|
name: Dot Accuracy@3 |
|
- type: dot_accuracy@5 |
|
value: 0.5717367853290184 |
|
name: Dot Accuracy@5 |
|
- type: dot_accuracy@10 |
|
value: 0.6634304207119741 |
|
name: Dot Accuracy@10 |
|
- type: dot_accuracy@30 |
|
value: 0.7669902912621359 |
|
name: Dot Accuracy@30 |
|
- type: dot_accuracy@50 |
|
value: 0.8133764832793959 |
|
name: Dot Accuracy@50 |
|
- type: dot_accuracy@100 |
|
value: 0.8619201725997843 |
|
name: Dot Accuracy@100 |
|
- type: dot_precision@1 |
|
value: 0.3290183387270766 |
|
name: Dot Precision@1 |
|
- type: dot_precision@3 |
|
value: 0.18985976267529667 |
|
name: Dot Precision@3 |
|
- type: dot_precision@5 |
|
value: 0.1387270765911543 |
|
name: Dot Precision@5 |
|
- type: dot_precision@10 |
|
value: 0.08737864077669903 |
|
name: Dot Precision@10 |
|
- type: dot_precision@30 |
|
value: 0.038511326860841424 |
|
name: Dot Precision@30 |
|
- type: dot_precision@50 |
|
value: 0.025652642934196335 |
|
name: Dot Precision@50 |
|
- type: dot_precision@100 |
|
value: 0.0143042071197411 |
|
name: Dot Precision@100 |
|
- type: dot_recall@1 |
|
value: 0.19940326364274585 |
|
name: Dot Recall@1 |
|
- type: dot_recall@3 |
|
value: 0.32588483073919966 |
|
name: Dot Recall@3 |
|
- type: dot_recall@5 |
|
value: 0.39370216263420144 |
|
name: Dot Recall@5 |
|
- type: dot_recall@10 |
|
value: 0.4770997071967946 |
|
name: Dot Recall@10 |
|
- type: dot_recall@30 |
|
value: 0.6043595143918767 |
|
name: Dot Recall@30 |
|
- type: dot_recall@50 |
|
value: 0.659138542148251 |
|
name: Dot Recall@50 |
|
- type: dot_recall@100 |
|
value: 0.7219987671443983 |
|
name: Dot Recall@100 |
|
- type: dot_ndcg@10 |
|
value: 0.3791495475200093 |
|
name: Dot Ndcg@10 |
|
- type: dot_mrr@10 |
|
value: 0.4305302991387128 |
|
name: Dot Mrr@10 |
|
- type: dot_map@100 |
|
value: 0.31951258454174397 |
|
name: Dot Map@100 |
|
--- |
|
|
|
# SentenceTransformer based on Alibaba-NLP/gte-large-en-v1.5 |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Alibaba-NLP/gte-large-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-large-en-v1.5). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [Alibaba-NLP/gte-large-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-large-en-v1.5) <!-- at revision 104333d6af6f97649377c2afbde10a7704870c7b --> |
|
- **Maximum Sequence Length:** 8192 tokens |
|
- **Output Dimensionality:** 1024 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NewModel |
|
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("model_3") |
|
# Run inference |
|
sentences = [ |
|
"What was Nathan's response to the initial proposal from Global Air U?", |
|
"I don't see on the proposal.\nI don't see anything class or the class related.\nUm.\nOh, so for the course.\nNo, no.", |
|
'And hopefully that should update now in your account in a second.\nYeah.\nIf you give that a go now, you should see all the way to August 2025.', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 1024] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Information Retrieval |
|
|
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:---------------------|:-----------| |
|
| cosine_accuracy@1 | 0.3279 | |
|
| cosine_accuracy@3 | 0.4898 | |
|
| cosine_accuracy@5 | 0.5663 | |
|
| cosine_accuracy@10 | 0.6613 | |
|
| cosine_accuracy@30 | 0.767 | |
|
| cosine_accuracy@50 | 0.8155 | |
|
| cosine_accuracy@100 | 0.8598 | |
|
| cosine_precision@1 | 0.3279 | |
|
| cosine_precision@3 | 0.1902 | |
|
| cosine_precision@5 | 0.1383 | |
|
| cosine_precision@10 | 0.0872 | |
|
| cosine_precision@30 | 0.0384 | |
|
| cosine_precision@50 | 0.0257 | |
|
| cosine_precision@100 | 0.0143 | |
|
| cosine_recall@1 | 0.1988 | |
|
| cosine_recall@3 | 0.3261 | |
|
| cosine_recall@5 | 0.391 | |
|
| cosine_recall@10 | 0.4756 | |
|
| cosine_recall@30 | 0.6031 | |
|
| cosine_recall@50 | 0.6602 | |
|
| cosine_recall@100 | 0.7195 | |
|
| cosine_ndcg@10 | 0.3785 | |
|
| cosine_mrr@10 | 0.4295 | |
|
| **cosine_map@100** | **0.3193** | |
|
| dot_accuracy@1 | 0.329 | |
|
| dot_accuracy@3 | 0.4887 | |
|
| dot_accuracy@5 | 0.5717 | |
|
| dot_accuracy@10 | 0.6634 | |
|
| dot_accuracy@30 | 0.767 | |
|
| dot_accuracy@50 | 0.8134 | |
|
| dot_accuracy@100 | 0.8619 | |
|
| dot_precision@1 | 0.329 | |
|
| dot_precision@3 | 0.1899 | |
|
| dot_precision@5 | 0.1387 | |
|
| dot_precision@10 | 0.0874 | |
|
| dot_precision@30 | 0.0385 | |
|
| dot_precision@50 | 0.0257 | |
|
| dot_precision@100 | 0.0143 | |
|
| dot_recall@1 | 0.1994 | |
|
| dot_recall@3 | 0.3259 | |
|
| dot_recall@5 | 0.3937 | |
|
| dot_recall@10 | 0.4771 | |
|
| dot_recall@30 | 0.6044 | |
|
| dot_recall@50 | 0.6591 | |
|
| dot_recall@100 | 0.722 | |
|
| dot_ndcg@10 | 0.3791 | |
|
| dot_mrr@10 | 0.4305 | |
|
| dot_map@100 | 0.3195 | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
|
|
* Size: 7,005 training samples |
|
* Columns: <code>anchor</code> and <code>positive</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | anchor | positive | |
|
|:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------| |
|
| type | string | string | |
|
| details | <ul><li>min: 8 tokens</li><li>mean: 14.59 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 12 tokens</li><li>mean: 60.98 tokens</li><li>max: 170 tokens</li></ul> | |
|
* Samples: |
|
| anchor | positive | |
|
|:---------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| <code>What progress has been made with setting up Snowflake share?</code> | <code>He finally got around to giving me the information necessary to set up Snowflake share.<br>I will be submitting the application to get back set up.<br>Once the database is set up, then we just need to figure out how to configure Snowflake share, which it's going to be in the documentation.<br>We should be set on that end.<br>We also are going to have a conversation with someone named Peter Tsanghen, who's, who owns Jira platform.<br>Great.</code> | |
|
| <code>Who is Peter Tsanghen and what is the planned interaction with him?</code> | <code>He finally got around to giving me the information necessary to set up Snowflake share.<br>I will be submitting the application to get back set up.<br>Once the database is set up, then we just need to figure out how to configure Snowflake share, which it's going to be in the documentation.<br>We should be set on that end.<br>We also are going to have a conversation with someone named Peter Tsanghen, who's, who owns Jira platform.<br>Great.</code> | |
|
| <code>Who is Peter Tsanghen and what is the planned interaction with him?</code> | <code>Uh, and so now we just have to meet with Peter.<br>Peter is someone who I used to work with on, he used to work on, uh, syndicated data products.<br>So I used to work with him on that.</code> | |
|
* Loss: <code>__main__.MultipleNegativesRankingLoss_with_logging</code> |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `per_device_train_batch_size`: 4 |
|
- `per_device_eval_batch_size`: 4 |
|
- `num_train_epochs`: 2 |
|
- `max_steps`: 1751 |
|
- `disable_tqdm`: True |
|
- `multi_dataset_batch_sampler`: round_robin |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 4 |
|
- `per_device_eval_batch_size`: 4 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `learning_rate`: 5e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1 |
|
- `num_train_epochs`: 2 |
|
- `max_steps`: 1751 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.0 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: False |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: True |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_sampler`: batch_sampler |
|
- `multi_dataset_batch_sampler`: round_robin |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | cosine_map@100 | |
|
|:------:|:----:|:--------------:| |
|
| 0.0114 | 20 | 0.2538 | |
|
| 0.0228 | 40 | 0.2601 | |
|
| 0.0342 | 60 | 0.2724 | |
|
| 0.0457 | 80 | 0.2911 | |
|
| 0.0571 | 100 | 0.2976 | |
|
| 0.0685 | 120 | 0.3075 | |
|
| 0.0799 | 140 | 0.3071 | |
|
| 0.0913 | 160 | 0.3111 | |
|
| 0.1027 | 180 | 0.3193 | |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.10.9 |
|
- Sentence Transformers: 3.0.1 |
|
- Transformers: 4.39.3 |
|
- PyTorch: 2.3.1+cu121 |
|
- Accelerate: 0.31.0 |
|
- Datasets: 2.20.0 |
|
- Tokenizers: 0.15.2 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |