|
--- |
|
license: apache-2.0 |
|
datasets: |
|
- gair-prox/RedPajama-pro |
|
language: |
|
- en |
|
tags: |
|
- llama |
|
--- |
|
|
|
# RedPJ-ProX-1.7B |
|
|
|
<p align="center"> |
|
<img src="prox-teaser.png"> |
|
</p> |
|
|
|
[ArXiv](http://arxiv.org/abs/2409.17115) | [Models](https://huggingface.co/gair-prox/RedPJ-ProX-1.7B) | [Data](https://huggingface.co/datasets/gair-prox/RedPajama-pro) | [Code](https://github.com/GAIR-NLP/program-every-example) |
|
|
|
**RedPJ-ProX-1.7B** is a small language model. It was and trained on the [RedPajama-V2-pro](https://huggingface.co/datasets/gair-prox/RedPajama-pro) for 50B tokens. |
|
|
|
## Evaluations |
|
|
|
ProX models are evaluated over 10 language model benchmarks in zero-shot setting. |
|
|
|
| | ArC-c | ARC-e | CSQA | HellaS | MMLU | OBQA | PiQA | SIQA | WinoG | SciQ | AVG | |
|
|-----------------------|-------|-------|-------|-----------|-------|-------|-------|-------|-------|-------|------| |
|
| raw | 26.9 | 51.4 | 32.4 | 47.3 | 29.3 | 32.2 | 69.7 | 39.6 | 52.1 | 79.1 | 46.0 | |
|
| ours | 31.1 | 60.7 | 29.8 | 51.0 | 31.7 | 33.2 | 70.9 | 39.2 | 53.3 | 79.1 | 48.0 | |
|
|
|
### Citation |
|
``` |
|
@article{zhou2024programming, |
|
title={Programming Every Example: Lifting Pre-training Data Quality like Experts at Scale}, |
|
author={Zhou, Fan and Wang, Zengzhi and Liu, Qian and Li, Junlong and Liu, Pengfei}, |
|
journal={arXiv preprint arXiv:2409.17115}, |
|
year={2024} |
|
} |
|
``` |