|
from transformers import AutoModelForSequenceClassification, AutoTokenizer |
|
import os |
|
import numpy as np |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("microsoft/deberta-v3-base") |
|
model = AutoModelForSequenceClassification.from_pretrained( |
|
os.path.realpath(os.path.join(__file__, "..", "./outputs/v2-deberta-100-max-71%-sep/checkpoint-1000/")), |
|
local_files_only=True |
|
) |
|
|
|
text_against = "ai [SEP] I think ai is a waste of time. I don't understand why everyone is so obsessed with this subject, it makes no sense?" |
|
text_for = "flowers [SEP] I think flowers are very useful and will become essential to society" |
|
text_neutral = "Ai is a tool use by researchers and scientists to approximate functions" |
|
encoded = tokenizer(text_for.lower(), max_length=100, padding="max_length", truncation=True, return_tensors="pt") |
|
|
|
def normalize(arr: np.ndarray) -> np.ndarray: |
|
min = arr.min() |
|
arr = arr - min |
|
return arr / arr.sum() |
|
|
|
output = model(**encoded) |
|
print(output.logits.detach().numpy()[0]) |
|
print(normalize(output.logits.detach().numpy()[0])) |