Commit
·
b53369f
1
Parent(s):
b2643ce
Initial model output
Browse files- .gitignore +1 -0
- config.json +45 -0
- datasets/info.txt +2 -0
- datasets/test.csv +0 -0
- datasets/train.csv +0 -0
- model.safetensors +3 -0
- rng_state.pth +3 -0
- scheduler.pt +3 -0
- test.py +23 -0
- train.py +66 -0
- trainer_state.json +53 -0
- training_args.bin +3 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
outputs
|
config.json
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "microsoft/deberta-v3-base",
|
3 |
+
"architectures": [
|
4 |
+
"DebertaV2ForSequenceClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"hidden_act": "gelu",
|
8 |
+
"hidden_dropout_prob": 0.1,
|
9 |
+
"hidden_size": 768,
|
10 |
+
"id2label": {
|
11 |
+
"0": "LABEL_0",
|
12 |
+
"1": "LABEL_1",
|
13 |
+
"2": "LABEL_2"
|
14 |
+
},
|
15 |
+
"initializer_range": 0.02,
|
16 |
+
"intermediate_size": 3072,
|
17 |
+
"label2id": {
|
18 |
+
"LABEL_0": 0,
|
19 |
+
"LABEL_1": 1,
|
20 |
+
"LABEL_2": 2
|
21 |
+
},
|
22 |
+
"layer_norm_eps": 1e-07,
|
23 |
+
"max_position_embeddings": 512,
|
24 |
+
"max_relative_positions": -1,
|
25 |
+
"model_type": "deberta-v2",
|
26 |
+
"norm_rel_ebd": "layer_norm",
|
27 |
+
"num_attention_heads": 12,
|
28 |
+
"num_hidden_layers": 12,
|
29 |
+
"pad_token_id": 0,
|
30 |
+
"pooler_dropout": 0,
|
31 |
+
"pooler_hidden_act": "gelu",
|
32 |
+
"pooler_hidden_size": 768,
|
33 |
+
"pos_att_type": [
|
34 |
+
"p2c",
|
35 |
+
"c2p"
|
36 |
+
],
|
37 |
+
"position_biased_input": false,
|
38 |
+
"position_buckets": 256,
|
39 |
+
"relative_attention": true,
|
40 |
+
"share_att_key": true,
|
41 |
+
"torch_dtype": "float32",
|
42 |
+
"transformers_version": "4.38.2",
|
43 |
+
"type_vocab_size": 0,
|
44 |
+
"vocab_size": 128100
|
45 |
+
}
|
datasets/info.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
SemEval-2016 Task 6
|
2 |
+
https://alt.qcri.org/semeval2016/task6/index.php?id=data-and-tools
|
datasets/test.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
datasets/train.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dc4eccd7fa0d493ce18a1f334c618566485321f1567c92f8f9170ace693badaf
|
3 |
+
size 737722356
|
rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cf6d32b103197dc0b3210814748bc7af241646d83d0a4e8e33910d527c40122b
|
3 |
+
size 14244
|
scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bd93ceae9b40717ccd5dcd1b77f775797992dd03971d180c878c64433e5e15d2
|
3 |
+
size 1064
|
test.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
2 |
+
import os
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
tokenizer = AutoTokenizer.from_pretrained("microsoft/deberta-v3-base")
|
6 |
+
model = AutoModelForSequenceClassification.from_pretrained(
|
7 |
+
os.path.realpath(os.path.join(__file__, "..", "./outputs/v2-deberta-100-max-71%-sep/checkpoint-1000/")),
|
8 |
+
local_files_only=True
|
9 |
+
)
|
10 |
+
|
11 |
+
text_against = "ai [SEP] I think ai is a waste of time. I don't understand why everyone is so obsessed with this subject, it makes no sense?"
|
12 |
+
text_for = "flowers [SEP] I think flowers are very useful and will become essential to society"
|
13 |
+
text_neutral = "Ai is a tool use by researchers and scientists to approximate functions"
|
14 |
+
encoded = tokenizer(text_for.lower(), max_length=100, padding="max_length", truncation=True, return_tensors="pt")
|
15 |
+
|
16 |
+
def normalize(arr: np.ndarray) -> np.ndarray:
|
17 |
+
min = arr.min()
|
18 |
+
arr = arr - min
|
19 |
+
return arr / arr.sum()
|
20 |
+
|
21 |
+
output = model(**encoded)
|
22 |
+
print(output.logits.detach().numpy()[0])
|
23 |
+
print(normalize(output.logits.detach().numpy()[0]))
|
train.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import csv
|
2 |
+
from typing import TypedDict
|
3 |
+
import numpy as np
|
4 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, TrainingArguments, Trainer
|
5 |
+
from datasets import load_dataset, Dataset
|
6 |
+
import pandas as pd
|
7 |
+
import evaluate
|
8 |
+
import os
|
9 |
+
import torch
|
10 |
+
|
11 |
+
data_files = {
|
12 |
+
"train": os.path.realpath(os.path.join(__file__, "..", "./datasets/train.csv")),
|
13 |
+
"test": os.path.realpath(os.path.join(__file__, "..", "./datasets/test.csv"))
|
14 |
+
}
|
15 |
+
output_dir = os.path.realpath(os.path.join(__file__, "..", "./outputs/v2-deberta-100-max"))
|
16 |
+
|
17 |
+
tokenizer = AutoTokenizer.from_pretrained("microsoft/deberta-v3-base")
|
18 |
+
|
19 |
+
label_map = {
|
20 |
+
"FAVOR": 0,
|
21 |
+
"NONE": 1,
|
22 |
+
"AGAINST": 2
|
23 |
+
}
|
24 |
+
|
25 |
+
torch.cuda.empty_cache()
|
26 |
+
|
27 |
+
def tokenize(examples):
|
28 |
+
examples["label"] = [label_map[label] for label in examples["label"]]
|
29 |
+
examples["text"] = [examples["Target"][i] + " [SEP] " + text for i , text in enumerate(examples["text"])]
|
30 |
+
return tokenizer(examples["text"], padding="max_length", return_tensors='pt', truncation=True, max_length=100)
|
31 |
+
|
32 |
+
|
33 |
+
def load_dataset(path: str) -> Dataset:
|
34 |
+
dataframe = pd.read_csv(path)
|
35 |
+
dataframe = dataframe.drop("Opinion Towards", axis=1)
|
36 |
+
dataframe = dataframe.drop("Sentiment", axis=1)
|
37 |
+
dataset = Dataset.from_pandas(dataframe)
|
38 |
+
dataset = dataset.rename_column('Tweet', 'text')
|
39 |
+
dataset = dataset.rename_column("Stance", "label")
|
40 |
+
|
41 |
+
return dataset.map(tokenize, batched=True)
|
42 |
+
|
43 |
+
train_ds = load_dataset(data_files["train"])
|
44 |
+
test_ds = load_dataset(data_files["test"])
|
45 |
+
|
46 |
+
model = AutoModelForSequenceClassification.from_pretrained("microsoft/deberta-v3-base", num_labels=3)
|
47 |
+
|
48 |
+
metric = evaluate.load("accuracy")
|
49 |
+
|
50 |
+
def compute_metrics(eval_pred):
|
51 |
+
logits, labels = eval_pred
|
52 |
+
predictions = np.argmax(logits, axis=-1)
|
53 |
+
return metric.compute(predictions=predictions, references=labels)
|
54 |
+
|
55 |
+
training_args = TrainingArguments(output_dir=output_dir, evaluation_strategy="epoch")
|
56 |
+
|
57 |
+
trainer = Trainer(
|
58 |
+
model=model,
|
59 |
+
args=training_args,
|
60 |
+
train_dataset=train_ds,
|
61 |
+
eval_dataset=test_ds,
|
62 |
+
compute_metrics=compute_metrics
|
63 |
+
)
|
64 |
+
print("TRAINING")
|
65 |
+
|
66 |
+
trainer.train()
|
trainer_state.json
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 2.73972602739726,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 1000,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 1.0,
|
13 |
+
"eval_accuracy": 0.6820040899795501,
|
14 |
+
"eval_loss": 0.7493410706520081,
|
15 |
+
"eval_runtime": 6.4955,
|
16 |
+
"eval_samples_per_second": 301.132,
|
17 |
+
"eval_steps_per_second": 37.718,
|
18 |
+
"step": 365
|
19 |
+
},
|
20 |
+
{
|
21 |
+
"epoch": 1.37,
|
22 |
+
"grad_norm": 20.02265739440918,
|
23 |
+
"learning_rate": 2.71689497716895e-05,
|
24 |
+
"loss": 0.7495,
|
25 |
+
"step": 500
|
26 |
+
},
|
27 |
+
{
|
28 |
+
"epoch": 2.0,
|
29 |
+
"eval_accuracy": 0.7055214723926381,
|
30 |
+
"eval_loss": 0.7625377774238586,
|
31 |
+
"eval_runtime": 6.586,
|
32 |
+
"eval_samples_per_second": 296.992,
|
33 |
+
"eval_steps_per_second": 37.2,
|
34 |
+
"step": 730
|
35 |
+
},
|
36 |
+
{
|
37 |
+
"epoch": 2.74,
|
38 |
+
"grad_norm": 15.491150856018066,
|
39 |
+
"learning_rate": 4.337899543378996e-06,
|
40 |
+
"loss": 0.4253,
|
41 |
+
"step": 1000
|
42 |
+
}
|
43 |
+
],
|
44 |
+
"logging_steps": 500,
|
45 |
+
"max_steps": 1095,
|
46 |
+
"num_input_tokens_seen": 0,
|
47 |
+
"num_train_epochs": 3,
|
48 |
+
"save_steps": 500,
|
49 |
+
"total_flos": 410505404868000.0,
|
50 |
+
"train_batch_size": 8,
|
51 |
+
"trial_name": null,
|
52 |
+
"trial_params": null
|
53 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:16a839ef4391579a0a777fe359682af2af1f7b1340ab79e578d454375fa4556c
|
3 |
+
size 5048
|