Model Card for Super Tiny Bert
This is a super tiny Bert model for testing purposes.
Model Details
This model has been generated using:
from transformers import BertTokenizer, BertModel, BertConfig
# Define a tiny BERT configuration
config = BertConfig(
vocab_size=30,
hidden_size=8,
num_hidden_layers=2,
num_attention_heads=2,
intermediate_size=8,
max_position_embeddings=8,
)
# Initialize a tiny BERT model with the custom configuration
model = BertModel(config)
# Create a custom vocabulary
vocab = {
"[PAD]": 0,
"[UNK]": 1,
"[CLS]": 2,
"[SEP]": 3,
"[MASK]": 4,
"hello": 5,
"how": 6,
"are": 7,
"you": 8,
"?": 9,
"i": 10,
"am": 11,
"fine": 12,
"thanks": 13,
"and": 14,
"good": 15,
"morning": 16,
"evening": 17,
"night": 18,
"yes": 19,
"no": 20,
"please": 21,
"thank": 22,
"welcome": 23,
"sorry": 24,
"bye": 25,
"see": 26,
"later": 27,
"take": 28,
"care": 29,
}
# Save the vocabulary to a file
vocab_file = "vocab.txt"
with open(vocab_file, "w") as f:
for token, index in sorted(vocab.items(), key=lambda item: item[1]):
f.write(f"{token}\n")
# Initialize the tokenizer with the custom vocabulary
tokenizer = BertTokenizer(vocab_file=vocab_file)
# Example usage: Tokenize input text
text = "Hello, how are you?"
inputs = tokenizer(text, return_tensors="pt")
# Forward pass through the model
outputs = model(**inputs)
# Extract the last hidden states
last_hidden_states = outputs.last_hidden_state
print("Last hidden states shape:", last_hidden_states.shape)
# Save the tokenizer and model to the Hugging Face Hub
model_name = "flexsystems/flex-e2e-super-tiny-bert-model"
tokenizer.push_to_hub(model_name, private=False)
model.push_to_hub(model_name, private=False)
print(f"Tiny BERT model and tokenizer saved to the Hugging Face Hub as '{model_name}'.")
- Downloads last month
- 88