Modelo para Reconhecimento de Entidade Nomeadas em português utilizando o modelo spaCy pt_core_news_lg
Link do trabalho no Kaggle: https://www.kaggle.com/datasets/flaviagg/lenerbr .
Criei um Web App que proporciona a comparação dos modelos sm e lg: https://huggingface.co/spaces/flaviaggp/Streamlit_Lener .
Métricas por entidade
Feature | Description |
---|---|
Name | pt_lg_pipeline |
Version | 0.0.0 |
spaCy | >=3.4.4,<3.5.0 |
Default Pipeline | tok2vec , ner |
Components | tok2vec , ner |
Vectors | 500000 keys, 500000 unique vectors (300 dimensions) |
Sources | n/a |
License | n/a |
Author | n/a |
Label Scheme
View label scheme (6 labels for 1 components)
Component | Labels |
---|---|
ner |
JURISPRUDENCIA , LEGISLACAO , LOCAL , ORGANIZACAO , PESSOA , TEMPO |
Accuracy
Type | Score |
---|---|
ENTS_F |
83.79 |
ENTS_P |
83.98 |
ENTS_R |
83.61 |
TOK2VEC_LOSS |
23620.33 |
NER_LOSS |
127975.46 |
- Downloads last month
- 7
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Dataset used to train flaviaggp/pt_lg_pipeline
Space using flaviaggp/pt_lg_pipeline 1
Evaluation results
- NER Precisionself-reported0.840
- NER Recallself-reported0.836
- NER F Scoreself-reported0.838