Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: databricks/dolly-v2-3b
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 2e418ceca421ab1e_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/2e418ceca421ab1e_train_data.json
  type:
    field_input: input
    field_instruction: instruction
    field_output: output
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
device: cuda
early_stopping_patience: 1
eval_max_new_tokens: 128
eval_steps: 5
eval_table_size: null
evals_per_epoch: null
flash_attention: false
fp16: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: fedovtt/b28ef4d6-a9e9-44f8-9e3c-61d92d34abd7
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 3
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_memory:
  0: 78GiB
max_steps: 30
micro_batch_size: 2
mlflow_experiment_name: /tmp/2e418ceca421ab1e_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 10
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: true
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 15e5ba25-5ace-4644-ac5c-173ba53997f7
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 15e5ba25-5ace-4644-ac5c-173ba53997f7
warmup_steps: 10
weight_decay: 0.01
xformers_attention: true

b28ef4d6-a9e9-44f8-9e3c-61d92d34abd7

This model is a fine-tuned version of databricks/dolly-v2-3b on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1737

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 30

Training results

Training Loss Epoch Step Validation Loss
No log 0.0000 1 1.3500
5.6916 0.0002 5 1.3080
4.9926 0.0003 10 1.2411
4.4152 0.0005 15 1.1960
4.9964 0.0007 20 1.1832
4.5838 0.0009 25 1.1758
5.1371 0.0010 30 1.1737

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
22
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model’s pipeline type.

Model tree for fedovtt/b28ef4d6-a9e9-44f8-9e3c-61d92d34abd7

Adapter
(185)
this model