Whisper base AR - BA

This model is a fine-tuned version of openai/whisper-base on the quran-ayat-speech-to-text dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1259
  • Wer: 0.2846

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
98.5205 1.0 313 0.1892 0.7493
29.6204 2.0 626 0.1465 0.4209
16.3912 3.0 939 0.1349 0.3646
10.2266 4.0 1252 0.1307 0.3240
7.221 5.0 1565 0.1326 0.3018
5.6073 6.0 1878 0.1318 0.2813
4.7685 7.0 2191 0.1276 0.2717
3.971 8.0 2504 0.1250 0.2701
3.5616 9.0 2817 0.1235 0.2698
3.2358 10.0 3130 0.1239 0.2753
3.0506 11.0 3443 0.1223 0.2738
2.8295 12.0 3756 0.1220 0.2782
2.5715 13.0 4069 0.1211 0.2722
2.4898 14.0 4382 0.1213 0.2683
2.4851 14.9536 4680 0.1213 0.2742

Framework versions

  • Transformers 4.51.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.0
Downloads last month
-
Safetensors
Model size
55.8M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for fathyy/Graduation_Project_Distilation_Whisper1

Finetuned
(581)
this model