Whisper base AR - BA
This model is a fine-tuned version of openai/whisper-base on the quran-ayat-speech-to-text dataset. It achieves the following results on the evaluation set:
- Loss: 0.1259
- Wer: 0.2846
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 15
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|---|---|---|---|---|
| 98.5205 | 1.0 | 313 | 0.1892 | 0.7493 |
| 29.6204 | 2.0 | 626 | 0.1465 | 0.4209 |
| 16.3912 | 3.0 | 939 | 0.1349 | 0.3646 |
| 10.2266 | 4.0 | 1252 | 0.1307 | 0.3240 |
| 7.221 | 5.0 | 1565 | 0.1326 | 0.3018 |
| 5.6073 | 6.0 | 1878 | 0.1318 | 0.2813 |
| 4.7685 | 7.0 | 2191 | 0.1276 | 0.2717 |
| 3.971 | 8.0 | 2504 | 0.1250 | 0.2701 |
| 3.5616 | 9.0 | 2817 | 0.1235 | 0.2698 |
| 3.2358 | 10.0 | 3130 | 0.1239 | 0.2753 |
| 3.0506 | 11.0 | 3443 | 0.1223 | 0.2738 |
| 2.8295 | 12.0 | 3756 | 0.1220 | 0.2782 |
| 2.5715 | 13.0 | 4069 | 0.1211 | 0.2722 |
| 2.4898 | 14.0 | 4382 | 0.1213 | 0.2683 |
| 2.4851 | 14.9536 | 4680 | 0.1213 | 0.2742 |
Framework versions
- Transformers 4.51.1
- Pytorch 2.5.1+cu124
- Datasets 3.5.0
- Tokenizers 0.21.0
- Downloads last month
- -
Model tree for fathyy/Graduation_Project_Distilation_Whisper1
Base model
openai/whisper-base