ModernBERT-Letter

This model is a fine-tuned version of Alibaba-NLP/gte-multilingual-reranker-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0038
  • Accuracy: 1.0
  • F1: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-06
  • train_batch_size: 16
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
No log 1.0 161 0.4207 0.9580 0.9554
No log 2.0 322 0.0516 0.9965 0.9964
No log 3.0 483 0.0187 1.0 1.0
0.391 4.0 644 0.0104 1.0 1.0
0.391 5.0 805 0.0072 1.0 1.0
0.391 6.0 966 0.0056 1.0 1.0
0.0145 7.0 1127 0.0047 1.0 1.0
0.0145 8.0 1288 0.0042 1.0 1.0
0.0145 9.0 1449 0.0039 1.0 1.0
0.0079 10.0 1610 0.0038 1.0 1.0

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.3.1
  • Tokenizers 0.21.0
Downloads last month
9
Safetensors
Model size
306M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The HF Inference API does not support model that require custom code execution.

Model tree for farshadafx/ModernBERT-Letter

Finetuned
(2)
this model