|
--- |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:500000 |
|
- loss:MultipleNegativesRankingLoss |
|
base_model: sagorsarker/bangla-bert-base |
|
widget: |
|
- source_sentence: মেহেরপুরে বিএনপি নেতা হামিদুর রহমান হেলাল ও তাঁর মেয়ে সেতু হত্যা |
|
মামলার প্রধান আসামি মোস্তাফিজুর রহমান টিপুকে কারাগারে পাঠিয়েছেন আদালত |
|
sentences: |
|
- মেহেরপুরে বিএনপি নেতা হামিদুর রহমান হেলাল ও তাঁর মেয়ে সেতু হত্যা মামলার প্রধান |
|
আসামি মোস্তাফিজুর রহমান টিপুকে কারাগারে পাঠিয়েছেন আদালত |
|
- স্টেসে কানিংহামকে এক্সচেঞ্জের তম প্রেসিডেন্ট হিসেবে ঘোষণা দেওয়া হয়েছে |
|
- আসিফ আকবরের সঙ্গে এটাই আমার প্রথম গান |
|
- source_sentence: উদ্দাম নাচলেন তারা |
|
sentences: |
|
- উদ্দাম নাচলেন তারা |
|
- শিক্ষাপ্রতিষ্ঠানগুলি অন্য কোনও উপায়ে শিক্ষার্থীদের মূল্যায়ন করবে কিনা সে বিষয়ে |
|
এখনও কোনও সিদ্ধান্ত হয়নি |
|
- বিয়ের পর তিনি জানতে পারেন তার স্বামী আগেও বিয়ে করেছেন |
|
- source_sentence: এমনই একটি সংলাপ শোনা যাবে নাট্যনির্মাতা মোস্তফা সারোয়ার ফারুকীর |
|
তিন মিনিটের একটি মোটিভেশনাল চলচ্চিত্রে |
|
sentences: |
|
- আর এ তালিকাই সার্চ কমিটির কাছে জমা দিয়েছিল তারা |
|
- এমনই একটি সংলাপ শোনা যাবে নাট্যনির্মাতা মোস্তফা সারোয়ার ফারুকীর তিন মিনিটের একটি |
|
মোটিভেশনাল চলচ্চিত্রে |
|
- আয়োডিনের অভাব হয় শিশু জন্মের আগেই |
|
- source_sentence: সরকারি একজন মুখপাত্রের বরাত দিয়ে দেশটির গণমাধ্যম জাপান টাইমস এই |
|
তথ্য জানিয়েছে |
|
sentences: |
|
- যুগান্তরের এক সপ্তাহের অনুসন্ধানে চোরাই জুতার কারবার নিয়ে উঠে এসেছে বিচিত্র সব |
|
তথ্য |
|
- সম্প্রতি লন্ডনে অনুষ্ঠিত ফাইভজি ওয়ার্ল্ড সামিট এ বেস্ট ফাইভজি কোর নেটওয়ার্ক |
|
টেকনোলজি শীর্ষক এই পুরস্কার দেওয়া হয় |
|
- সরকারি একজন মুখপাত্রের বরাত দিয়ে দেশটির গণমাধ্যম জাপান টাইমস এই তথ্য জানিয়েছে |
|
- source_sentence: শুক্রবার বিকালে সিলেটের ফেঞ্চুগঞ্জের উত্তর ইসলামপুরে বন্যার্ত |
|
পরিবারের মধ্যে ত্রাণ বিতরণ কার্যক্রমের উদ্বোধন শেষে সাংবাদিকদের তিনি একথা জানান |
|
sentences: |
|
- শুক্রবার বিকালে সিলেটের ফেঞ্চুগঞ্জের উত্তর ইসলামপুরে বন্যার্ত পরিবারের মধ্যে |
|
ত্রাণ বিতরণ কার্যক্রমের উদ্বোধন শেষে সাংবাদিকদের তিনি একথা জানান |
|
- উত্তরাঞ্চল ওভারে নাঈম কাপালি |
|
- থিওরি ও সূত্রগুলো ভালোভাবে বুঝতে হবে |
|
pipeline_tag: sentence-similarity |
|
library_name: sentence-transformers |
|
--- |
|
|
|
# SentenceTransformer based on sagorsarker/bangla-bert-base |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sagorsarker/bangla-bert-base](https://huggingface.co/sagorsarker/bangla-bert-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [sagorsarker/bangla-bert-base](https://huggingface.co/sagorsarker/bangla-bert-base) <!-- at revision 875aa80a42ec196c16bd931ae5d85ad949f58b16 --> |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Output Dimensionality:** 768 dimensions |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("farhana1996/unsupervised-simcse-bangla-bert-base") |
|
# Run inference |
|
sentences = [ |
|
'শুক্রবার বিকালে সিলেটের ফেঞ্চুগঞ্জের উত্তর ইসলামপুরে বন্যার্ত পরিবারের মধ্যে ত্রাণ বিতরণ কার্যক্রমের উদ্বোধন শেষে সাংবাদিকদের তিনি একথা জানান', |
|
'শুক্রবার বিকালে সিলেটের ফেঞ্চুগঞ্জের উত্তর ইসলামপুরে বন্যার্ত পরিবারের মধ্যে ত্রাণ বিতরণ কার্যক্রমের উদ্বোধন শেষে সাংবাদিকদের তিনি একথা জানান', |
|
'থিওরি ও সূত্রগুলো ভালোভাবে বুঝতে হবে', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
|
|
* Size: 500,000 training samples |
|
* Columns: <code>sentence_0</code> and <code>sentence_1</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence_0 | sentence_1 | |
|
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------| |
|
| type | string | string | |
|
| details | <ul><li>min: 3 tokens</li><li>mean: 27.48 tokens</li><li>max: 164 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 27.48 tokens</li><li>max: 164 tokens</li></ul> | |
|
* Samples: |
|
| sentence_0 | sentence_1 | |
|
|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| <code>তার তথ্যানুসন্ধানী প্রতিবেদন এবং বিনোদন জগতের তারকাদের সাক্ষাৎকারসহ সংস্কৃতি অঙ্গণের বিভিন্ন সমস্যা নিয়ে প্রতিবেদন প্রকাশ করে অনন্য ভূমিকা পালন করায় তাকে বাংলাদেশ কালচারাল রিপোটার্স এসোসিয়েশন এই সম্মাননা প্রদান করে</code> | <code>তার তথ্যানুসন্ধানী প্রতিবেদন এবং বিনোদন জগতের তারকাদের সাক্ষাৎকারসহ সংস্কৃতি অঙ্গণের বিভিন্ন সমস্যা নিয়ে প্রতিবেদন প্রকাশ করে অনন্য ভূমিকা পালন করায় তাকে বাংলাদেশ কালচারাল রিপোটার্স এসোসিয়েশন এই সম্মাননা প্রদান করে</code> | |
|
| <code>যা গত সপ্তাহে ছিল থেকে টাকা</code> | <code>যা গত সপ্তাহে ছিল থেকে টাকা</code> | |
|
| <code>একসঙ্গে টি স্মার্টফোন ব্যবহার করে এবার গুগলের এই প্রযুক্তিকে বোকা বানিয়েছেন জার্মানির সিমন ওয়েকার্ট</code> | <code>একসঙ্গে টি স্মার্টফোন ব্যবহার করে এবার গুগলের এই প্রযুক্তিকে বোকা বানিয়েছেন জার্মানির সিমন ওয়েকার্ট</code> | |
|
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: |
|
```json |
|
{ |
|
"scale": 20.0, |
|
"similarity_fct": "cos_sim" |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `per_device_train_batch_size`: 16 |
|
- `per_device_eval_batch_size`: 16 |
|
- `num_train_epochs`: 1 |
|
- `multi_dataset_batch_sampler`: round_robin |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: no |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 16 |
|
- `per_device_eval_batch_size`: 16 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `torch_empty_cache_steps`: None |
|
- `learning_rate`: 5e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1 |
|
- `num_train_epochs`: 1 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.0 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: False |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: None |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `include_for_metrics`: [] |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `use_liger_kernel`: False |
|
- `eval_use_gather_object`: False |
|
- `average_tokens_across_devices`: False |
|
- `prompts`: None |
|
- `batch_sampler`: batch_sampler |
|
- `multi_dataset_batch_sampler`: round_robin |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | |
|
|:-----:|:-----:|:-------------:| |
|
| 0.032 | 500 | 0.0082 | |
|
| 0.064 | 1000 | 0.0003 | |
|
| 0.096 | 1500 | 0.0001 | |
|
| 0.128 | 2000 | 0.0001 | |
|
| 0.16 | 2500 | 0.0 | |
|
| 0.192 | 3000 | 0.0 | |
|
| 0.224 | 3500 | 0.0 | |
|
| 0.256 | 4000 | 0.0001 | |
|
| 0.288 | 4500 | 0.0001 | |
|
| 0.32 | 5000 | 0.0001 | |
|
| 0.352 | 5500 | 0.0 | |
|
| 0.384 | 6000 | 0.0 | |
|
| 0.416 | 6500 | 0.0001 | |
|
| 0.448 | 7000 | 0.0 | |
|
| 0.48 | 7500 | 0.0001 | |
|
| 0.512 | 8000 | 0.0002 | |
|
| 0.544 | 8500 | 0.0 | |
|
| 0.576 | 9000 | 0.0001 | |
|
| 0.608 | 9500 | 0.0002 | |
|
| 0.64 | 10000 | 0.0003 | |
|
| 0.672 | 10500 | 0.0002 | |
|
| 0.704 | 11000 | 0.0002 | |
|
| 0.736 | 11500 | 0.0001 | |
|
| 0.768 | 12000 | 0.0003 | |
|
| 0.8 | 12500 | 0.0 | |
|
| 0.832 | 13000 | 0.0001 | |
|
| 0.864 | 13500 | 0.0002 | |
|
| 0.896 | 14000 | 0.0001 | |
|
| 0.928 | 14500 | 0.0 | |
|
| 0.96 | 15000 | 0.0001 | |
|
| 0.992 | 15500 | 0.0002 | |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- Sentence Transformers: 3.3.1 |
|
- Transformers: 4.47.0 |
|
- PyTorch: 2.5.1+cu121 |
|
- Accelerate: 1.2.1 |
|
- Datasets: 3.2.0 |
|
- Tokenizers: 0.21.0 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### MultipleNegativesRankingLoss |
|
```bibtex |
|
@misc{henderson2017efficient, |
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
year={2017}, |
|
eprint={1705.00652}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |