|
--- |
|
tags: |
|
- model_hub_mixin |
|
- pytorch_model_hub_mixin |
|
- model |
|
paper: https://arxiv.org/abs/2502.09135 |
|
--- |
|
|
|
Vanilla Sparse AutoEncoder trained on embeddings from layer 3 of esm2_t6_8M_UR50D. |
|
|
|
For more details check the [arxiv preprint](https://arxiv.org/abs/2502.09135) and |
|
the [github repository](https://github.com/edithvillegas/plm-sae). |
|
|
|
**To use:** |
|
|
|
Download the class defining the sparse autoencoder from github. |
|
```bash |
|
git clone [email protected]:edithvillegas/plm-sae.git |
|
cd plm-sae |
|
``` |
|
|
|
Load the base ESM2 model and the sparse autoencoder from huggingface. |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForMaskedLM |
|
from sae.SAE_methods import AutoEncoder #import sparse autoencoder from local definition |
|
|
|
#load ESM2 model |
|
tokenizer = AutoTokenizer.from_pretrained("facebook/esm2_t6_8M_UR50D") |
|
model = AutoModelForMaskedLM.from_pretrained("facebook/esm2_t6_8M_UR50D") |
|
model = model.to("cuda") |
|
|
|
#load SAE (GPU-only) |
|
sparse_autoencoder = AutoEncoder.from_pretrained("evillegasgarcia/sae_esm2_6_l3") |
|
``` |
|
|
|
Prepare auxiliary functions to extract embeddings from a specific point in the ESM2 model. |
|
|
|
```python |
|
#setup to extract ESM2 embeddings |
|
layer_name = "esm.encoder.layer.3.output" |
|
#define hook |
|
intermediate_embs = dict() |
|
def hook(module, input, output): |
|
intermediate_embs[layer_name] = output |
|
return hook |
|
#attach hook |
|
hook_handle = model.esm.encoder.layer[3].output.register_forward_hook(l3_hook) |
|
``` |
|
|
|
Extract embeddings from the ESM2 model and then from the sparse autoencoder. |
|
|
|
```python |
|
#Inference |
|
sequence = "MALWMRLLPLLALLALWGPDPAAAFVNQHLCGSHLVEALYLVCGERGFFYTPKTRREAEDLQVGQVELGGGPGAGSLQPL" |
|
|
|
#PLM Inference |
|
tokenized = tokenizer.encode(sequence, return_tensors="pt") |
|
tokenized = tokenized.to("cuda") |
|
outputs = model(tokenized) |
|
embeddings = intermediate_embs[layer_name][0] |
|
|
|
#SAE Inference |
|
_, _, sae_embeddings, _, _ = sparse_autoencoder(embeddings) |
|
``` |
|
|