|
--- |
|
pipeline_tag: feature-extraction |
|
tags: |
|
- pytorch |
|
- sentence-transformers |
|
- feature-extraction |
|
- sentence-similarity |
|
- transformers |
|
language: |
|
- ru |
|
- en |
|
datasets: |
|
- evilfreelancer/opus-php-en-ru-cleaned |
|
- Helsinki-NLP/opus_books |
|
--- |
|
|
|
# Enbeddrus v0.1 PC - English and Russian embedder |
|
|
|
> This is the model trained on Parallel Corpora only, other model is [here](https://huggingface.co/evilfreelancer/enbeddrus-v0.1-domain). |
|
|
|
This is a BERT (uncased) [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional |
|
dense vector space and can be used for tasks like clustering or semantic search. |
|
|
|
- **Parameters**: 168 million |
|
- **Layers**: 12 |
|
- **Hidden Size**: 768 |
|
- **Attention Heads**: 12 |
|
- **Vocabulary Size**: 119,547 |
|
- **Maximum Sequence Length**: 512 tokens |
|
|
|
The Enbeddrus model is designed to extract similar embeddings for comparable English and Russian phrases. It is based on |
|
the [bert-base-multilingual-uncased](https://huggingface.co/google-bert/bert-base-multilingual-cased) model and was |
|
trained over 20 epochs on the following datasets: |
|
|
|
- [evilfreelancer/opus-php-en-ru-cleaned](https://huggingface.co/datasets/evilfreelancer/opus-php-en-ru-cleaned) ( |
|
train): 1.6k lines |
|
- [Helsinki-NLP/opus_books](https://huggingface.co/datasets/Helsinki-NLP/opus_books/viewer/en-ru) (en-ru, train): 17.5k |
|
lines |
|
|
|
The goal of this model is to generate identical or very similar embeddings regardless of whether the text is written in |
|
English or Russian. |
|
|
|
[Enbeddrus GGUF](https://ollama.com/evilfreelancer/enbeddrus) version available via Ollama. |
|
|
|
## Usage (Sentence-Transformers) |
|
|
|
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: |
|
|
|
``` |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can use the model like this: |
|
|
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
sentences = [ |
|
"PHP является скриптовым языком программирования, широко используемым для веб-разработки.", |
|
"PHP is a scripting language widely used for web development.", |
|
"PHP поддерживает множество баз данных, таких как MySQL, PostgreSQL и SQLite.", |
|
"PHP supports many databases like MySQL, PostgreSQL, and SQLite.", |
|
"Функция echo в PHP используется для вывода текста на экран.", |
|
"The echo function in PHP is used to output text to the screen.", |
|
"Машинное обучение помогает создавать интеллектуальные системы.", |
|
"Machine learning helps to create intelligent systems.", |
|
] |
|
|
|
model = SentenceTransformer('evilfreelancer/enbeddrus-v0.1') |
|
embeddings = model.encode(sentences) |
|
print(embeddings) |
|
``` |
|
|
|
## Usage (HuggingFace Transformers) |
|
|
|
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input |
|
through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word |
|
embeddings. |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModel |
|
import torch |
|
|
|
|
|
# Mean Pooling - Take attention mask into account for correct averaging |
|
def mean_pooling(model_output, attention_mask): |
|
token_embeddings = model_output[0] # First element of model_output contains all token embeddings |
|
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() |
|
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) |
|
|
|
|
|
# Sentences we want sentence embeddings for |
|
sentences = [ |
|
"PHP является скриптовым языком программирования, широко используемым для веб-разработки.", |
|
"PHP is a scripting language widely used for web development.", |
|
"PHP поддерживает множество баз данных, таких как MySQL, PostgreSQL и SQLite.", |
|
"PHP supports many databases like MySQL, PostgreSQL, and SQLite.", |
|
"Функция echo в PHP используется для вывода текста на экран.", |
|
"The echo function in PHP is used to output text to the screen.", |
|
"Машинное обучение помогает создавать интеллектуальные системы.", |
|
"Machine learning helps to create intelligent systems.", |
|
] |
|
|
|
# Load model from HuggingFace Hub |
|
tokenizer = AutoTokenizer.from_pretrained('evilfreelancer/enbeddrus-v0.1') |
|
model = AutoModel.from_pretrained('evilfreelancer/enbeddrus-v0.1') |
|
|
|
# Tokenize sentences |
|
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') |
|
|
|
# Compute token embeddings |
|
with torch.no_grad(): |
|
model_output = model(**encoded_input) |
|
|
|
# Perform pooling. In this case, mean pooling. |
|
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) |
|
|
|
print("Sentence embeddings:") |
|
print(sentence_embeddings) |
|
``` |
|
|
|
## Evaluation Results |
|
|
|
The model was tested on the `eval` split of the |
|
dataset [evilfreelancer/opus-php-en-ru-cleaned](https://huggingface.co/datasets/evilfreelancer/opus-php-en-ru-cleaned), |
|
which contains 100 pairs of sentences in Russian and English on the topic of PHP. The results of the testing are |
|
presented in the image below. |
|
|
|
![Evaluation Results](./eval.png) |
|
|
|
* **Left**: Embedding similarity in Russian and English before training |
|
(the points are spread out into two distinct clusters). |
|
* **Center**: Embedding similarity after training |
|
(the points representing similar phrases are very close to each other). |
|
* **Right**: Cosine distance before and after training. |
|
|
|
## Training |
|
|
|
The model was trained with the parameters: |
|
|
|
**DataLoader**: |
|
|
|
`torch.utils.data.dataloader.DataLoader` of length 556 with parameters: |
|
|
|
```python |
|
{ |
|
'batch_size': 64, |
|
'sampler': 'torch.utils.data.sampler.RandomSampler', |
|
'batch_sampler': 'torch.utils.data.sampler.BatchSampler' |
|
} |
|
``` |
|
|
|
**Loss**: |
|
|
|
`sentence_transformers.losses.MSELoss.MSELoss` |
|
|
|
Parameters of the fit()-Method: |
|
|
|
``` |
|
{ |
|
"epochs": 20, |
|
"evaluation_steps": 100, |
|
"evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator", |
|
"max_grad_norm": 1, |
|
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>", |
|
"optimizer_params": { |
|
"eps": 1e-06, |
|
"lr": 2e-05 |
|
}, |
|
"scheduler": "WarmupLinear", |
|
"steps_per_epoch": null, |
|
"warmup_steps": 10000, |
|
"weight_decay": 0.01 |
|
} |
|
``` |
|
|
|
## Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Citing & Authors |
|
|
|
<!--- Describe where people can find more information --> |