File size: 6,297 Bytes
9de9fbf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import cv2
import pyautogui
import os
from glob import glob

screen_width, screen_height = pyautogui.size()

class window:
    def __init__(self, name, size=None, video_path=None, video_fps=30, video_size=(480, 320), show=False):
        self.screen_width, self.screen_height = pyautogui.size()
        self.screen_width = int(self.screen_width / 2)
        if size is not None:
            self.width = size[0]
            self.height = size[1]
        else:
            self.width = self.screen_width
            self.height = self.screen_height
        self.video_size = video_size
        self.video_fps = video_fps

        self.x_pos = (self.screen_width - self.width) // 2
        self.y_pos = (self.screen_height - self.height) // 2
        self.name = name
        
        if show:
            cv2.namedWindow(self.name, cv2.WINDOW_NORMAL)        
            cv2.resizeWindow(self.name, self.width, self.height)
            cv2.moveWindow(self.name, self.x_pos, self.y_pos)
        self.video_path = video_path
        if video_path is not None:
            self.init_video()

    def init_video(self):
        if self.video_path is not None:
            directory_path = f'./{self.video_path}'
            if not os.path.exists(directory_path):
                os.makedirs(directory_path)
            self.num = len(glob(f'./{self.video_path}/*.mp4'))
            fourcc = cv2.VideoWriter_fourcc(*'mp4v')  # You can change codec ('XVID', 'MJPG', etc.)
            self.video_writer = cv2.VideoWriter(f'./{self.video_path}/{self.num}.mp4', fourcc, self.video_fps, self.video_size)
        self.video_recording = False
        print('Video init to ', f'./{self.video_path}/{self.num}.mp4')

    def show(self, img, overlay_img=None, text=None, grid=None, show=False):
        if overlay_img is not None:
            img = cv2.addWeighted(img, 1 - 0.3, overlay_img, 0.3, 0)

        if text is not None:
            font = cv2.FONT_HERSHEY_SIMPLEX
            font_scale = 0.8
            font_thickness = 2
            font_color = (0, 0, 0)  # Black color
            (text_width, text_height), baseline = cv2.getTextSize(text, font, font_scale, font_thickness)
            image_height, image_width = img.shape[:2]
            x = (image_width - text_width) // 2  # X coordinate
            y = (image_height - text_height)
            cv2.rectangle(img, (0, image_height - int(2.2 * text_height)), (image_width, image_height), (255, 255, 255), -1)
            cv2.putText(img, text, (x, y), font, font_scale, font_color, font_thickness, lineType=cv2.LINE_AA)

        if grid is not None:
            # Draw vertical lines
            cols = 4
            rows = 3
            for row in range(0, rows):
                for col in range(0, cols - 1):
                    idx = int(cols * row + col)
                    cv2.line(img, (int(grid[idx][0]), int(grid[idx][1])), (int(grid[idx + 1][0]), int(grid[idx + 1][1])), (0, 0, 255), 1)  # Blue vertical lines

            for col in range(0, cols):
                for row in range(0, rows - 1):
                    idx = int(cols * row + col)
                    idx2 = idx + cols
                    cv2.line(img, (int(grid[idx][0]), int(grid[idx][1])), (int(grid[idx2][0]), int(grid[idx2][1])), (0, 0, 255), 1)  # Blue vertical lines
                
        self.img = cv2.resize(img, (self.width, self.height))
        if show:
            cv2.imshow(self.name, self.img)
            cv2.waitKey(1)

    def video_start(self):
        self.video_recording = True

    def video_write(self):
        if self.img is not None and self.video_recording is not None and self.video_writer.isOpened():
            frame_resized = cv2.resize(self.img, self.video_size)
            self.video_writer.write(frame_resized)

    def video_stop(self):
        self.video_recording = False
        print('Video saved!@!')
        self.video_writer.release()


import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

# Function to generate rotation matrix from RPY (roll, pitch, yaw)
def rpy_to_rotation_matrix(roll, pitch, yaw):
    # Rotation matrix around X axis (roll)
    R_x = np.array([[1, 0, 0],
                    [0, np.cos(roll), -np.sin(roll)],
                    [0, np.sin(roll), np.cos(roll)]])
    
    # Rotation matrix around Y axis (pitch)
    R_y = np.array([[np.cos(pitch), 0, np.sin(pitch)],
                    [0, 1, 0],
                    [-np.sin(pitch), 0, np.cos(pitch)]])
    
    # Rotation matrix around Z axis (yaw)
    R_z = np.array([[np.cos(yaw), -np.sin(yaw), 0],
                    [np.sin(yaw), np.cos(yaw), 0],
                    [0, 0, 1]])
    
    # Combined rotation matrix
    R = np.dot(R_z, np.dot(R_y, R_x))  # R = Rz * Ry * Rx
    return R

# Function to visualize the position and orientation
def visualize_xyz_rpy(x, y, z, roll, pitch, yaw):
    # Create a 3D plot
    fig = plt.figure()
    ax = fig.add_subplot(111, projection='3d')

    # Define object position
    position = np.array([x, y, z])

    # Compute rotation matrix
    R = rpy_to_rotation_matrix(roll, pitch, yaw)

    # Create the local axes (unit vectors)
    x_axis = R[:, 0]  # Local x-axis
    y_axis = R[:, 1]  # Local y-axis
    z_axis = R[:, 2]  # Local z-axis

    # Plot the original position point
    ax.scatter([x], [y], [z], color='k', s=100, label="Position")

    # Plot the rotated axes (X, Y, Z)
    ax.quiver(x, y, z, x_axis[0], x_axis[1], x_axis[2], color='r', length=1.0, normalize=True, label="X-axis (roll)")
    ax.quiver(x, y, z, y_axis[0], y_axis[1], y_axis[2], color='g', length=1.0, normalize=True, label="Y-axis (pitch)")
    ax.quiver(x, y, z, z_axis[0], z_axis[1], z_axis[2], color='b', length=1.0, normalize=True, label="Z-axis (yaw)")

    # Set plot limits for better visualization
    ax.set_xlim([x-2, x+2])
    ax.set_ylim([y-2, y+2])
    ax.set_zlim([z-2, z+2])

    # Add labels and title
    ax.set_xlabel('X')
    ax.set_ylabel('Y')
    ax.set_zlabel('Z')
    ax.set_title(f'Position: ({x}, {y}, {z}), RPY: ({np.degrees(roll):.1f}, {np.degrees(pitch):.1f}, {np.degrees(yaw):.1f})')

    # Show legend
    ax.legend()

    # Show the plot
    plt.show()

# Call the visualization function
# visualize_xyz_rpy(x, y, z, roll, pitch, yaw)