File size: 10,549 Bytes
9de9fbf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 |
import dm_env
from absl import logging
import rclpy
from sensor_msgs.msg import Image, JointState
from std_msgs.msg import Bool
from std_msgs.msg import Int32
import numpy as np
import threading
import time
# from visualize_utils import window
import random
from scipy.spatial.transform import Rotation
from glob import glob
import os
import h5py
import cv2
class AnubisRobotEnv:
def __init__(self, hz=20, max_timestep=1000, task_name='', num_rollout=1):
rclpy.init() # initialize ROS2 node
self._node = rclpy.create_node('anubis_robot_env_node')
self._subscriber_bringup()
print('ROS2 node created')
self.window = None
self.start = False
self.thread_done = False
self.hz = hz # control frequency
self.action_counter = 0
self.num_rollout = num_rollout
self.rollout_counter = 0
self.lang_dict = {
'anubis_brush_to_pan' : 'insert the brush to the dustpan',
'anubis_carrot_to_bag' : 'pick up the carrot and put into the bag',
'anubis_towel_kirby' : 'take the towel off the kirby doll'
}
self.task_name = task_name
self.instruction = self.lang_dict[self.task_name]
self.data_list = glob(f'/home/rllab/workspace/jellyho/demo_collection/{self.task_name}/*.hdf5')
self.overlay_img = None
self.max_timestep = max_timestep
self.init_action = JointState()
self.init_action.position = [
0.20620185010895048,
0.16183641523267392,
0.2277105000367078,
-0.42093861525667453,
0.6546518510233503,
-0.5770953981378887,
0.24739146627474096,
-1.6, #
0.21136149716403216,
-0.16027684481842075,
0.21879985782478842,
0.6606782591766969,
-0.428768621033297,
0.2340722378552696,
-0.569975345900049,
-1.6
]
print('Initializing Anubis Robot Environment')
self.thread = PeriodicThread(1/self.hz, self.timer_callback)
self.thread.start()
self.video_thread = PeriodicThread(1/30, self.video_timer_callback)
self.video_thread.start()
self.timer_thread = threading.Thread(target=rclpy.spin, args=(self._node,), daemon=True)
self.timer_thread.start()
print('Threads started')
self.bringup_model()
self.initialize()
logging.set_verbosity(logging.INFO)
logging.info('AnubisRobotEnv successfully initialized.')
def init_robot_pose(self, demo):
print('Initializing robot pose', demo % len(self.data_list))
root = h5py.File(self.data_list[demo % len(self.data_list)], 'r')
first_action = root['action']['eef_pose'][0]
self.publish_action(first_action)
def initialize(self):
self.curr_timestep = 0
if self.window is None:
from visualize_utils import window
self.window = window('ENV Observation', video_path=f'{self.model_name}-{self.task_name}', video_fps=30, video_size=(640, 480), show=False)
else:
self.window.init_video()
self.send_demo(self.rollout_counter)
self.init_robot_pose(self.rollout_counter)
def reset(self):
while not self.thread_done:
time.sleep(0.01)
continue
self.thread_done = False
return dm_env.restart(observation=self._observation())
def bringup_model(self):
raise NotImplementedError
def inference(self):
raise NotImplementedError
def ros_close(self):
self.thread.stop()
self.timer_thread.stop()
self._node.destroy_node()
rclpy.shutdown()
def _subscriber_bringup(self):
'''
Note: This function creates all the subscribers \
for reading joint and gripper states.
'''
###### Initial Setup #####
self.obs = {}
self.action = {}
###### OBSERVATION ######
# image
self._node.create_subscription(Image, '/camera_center/camera/color/image_raw', self.agentview_image_callback, 10)
self.obs['agentview_image'] = np.zeros(shape=(480, 640, 3), dtype=np.uint8)
self._node.create_subscription(Image, '/camera_right/camera/color/image_raw', self.rightview_image_callback, 10)
self.obs['rightview_image'] = np.zeros(shape=(480, 640, 3), dtype=np.uint8)
self._node.create_subscription(Image, '/camera_left/camera/color/image_raw', self.leftview_image_callback, 10)
self.obs['leftview_image'] = np.zeros(shape=(480, 640, 3), dtype=np.uint8)
# # arm pose states
self._node.create_subscription(JointState, '/eef_pose', self.eef_pose_callback, 10)
self.obs['eef_pose'] = np.zeros(shape=(20,), dtype=np.float64)
# # gripper joint states
self.obs['language_instruction'] = ''
##### TRIGGER #####
self._node.create_subscription(Bool, '/done', self.done_callback, 10)
self.demo_pub = self._node.create_publisher(Int32, '/demo', 10)
self.action_pub = self._node.create_publisher(JointState, '/teleop/eef_pose', 10)
def send_demo(self, num):
demo_msg = Int32()
demo_msg.data = num
self.demo_pub.publish(demo_msg)
#### OBS ###########
def agentview_image_callback(self, msg):
self.obs['agentview_image'] = np.reshape(msg.data, (480, 640, 3))
def rightview_image_callback(self, msg):
rightview = np.reshape(msg.data, (480, 640, 3))
self.obs['rightview_image'] = np.rot90(rightview, 2)
def leftview_image_callback(self, msg):
self.obs['leftview_image'] = np.reshape(msg.data, (480, 640, 3))
def eef_pose_callback(self, msg):
recevied_data = np.array(msg.position)
eef_pose_data = np.zeros(shape=(20,), dtype=np.float64)
eef_pose_data[:3] = recevied_data[:3]
eef_pose_data[3:9] = self.quat_to_6d(recevied_data[3:7], scalar_first=False)
eef_pose_data[9] = recevied_data[7]
eef_pose_data[10:13] = recevied_data[8:11]
eef_pose_data[13:19] = self.quat_to_6d(recevied_data[11:15], scalar_first=False)
eef_pose_data[19] = recevied_data[15]
self.obs['eef_pose'] = eef_pose_data
def send_action(self, act):
if self.start:
action_msg = JointState()
# print('action msg', act)
# print(act, act[9] < 0, act[-1] < 0)
# act[9] = -1.6 if act[9] > 0 else 0.1
# act[-1] = -1.6 if act[-1] > 0 else 0.1
# Assign the NumPy array to the data field of the message
action_msg_data = np.zeros(16)
action_msg_data[0:3] = act[0:3]
action_msg_data[3:7] = self.sixd_to_quat(act[3:9])
action_msg_data[7] = act[9]
action_msg_data[8:11] = act[10:13]
action_msg_data[11:15] = self.sixd_to_quat(act[13:19])
action_msg_data[15] = act[19]
action_msg.position = action_msg_data.astype(float).tolist()
self.action_pub.publish(action_msg)
def publish_action(self, action):
action_msg = JointState()
# Assign the NumPy array to the data field of the message
# Squeeze the action to remove any extra dimensions
action = action.squeeze()
action_msg_data = np.zeros(16)
action_msg_data[0:3] = action[0:3]
action_msg_data[3:7] = self.sixd_to_quat(action[3:9])
action_msg_data[7] = action[9]
action_msg_data[8:11] = action[10:13]
action_msg_data[11:15] = self.sixd_to_quat(action[13:19])
action_msg_data[15] = action[19]
action_msg.position = action_msg_data.astype(float).tolist()
self.action_pub.publish(action_msg)
def done_callback(self, msg):
if not self.start:
print('Inference & Video Recording Start')
self.start = True
self.window.video_start()
else:
self.start = False
self.action_counter = 0
self.rollout_counter += 1
if self.window.video_recording:
self.window.video_stop()
self.initialize()
print('Next Inference Ready')
def timer_callback(self):
if self.start:
self.inference()
self.curr_timestep += 1
if self.curr_timestep >= self.max_timestep:
print("Max timestep reached, resetting environment.")
self.start = False
if self.window.video_recording:
self.window.video_stop()
self.rollout_counter += 1
self.action_counter = 0
self.curr_timestep = 0
self.initialize()
self.thread_done = True
def video_timer_callback(self):
if self.start and self.window.video_recording:
self.window.video_write()
def quat_to_6d(self, quat, scalar_first=False):
r = Rotation.from_quat(quat, scalar_first=scalar_first)
mat = r.as_matrix()
return mat[:, :2].flatten()
def sixd_to_quat(self, sixd, scalar_first=False):
mat = np.zeros((3, 3))
mat[:, :2] = sixd.reshape(3, 2)
mat[:, 2] = np.cross(mat[:, 0], mat[:, 1])
r = Rotation.from_matrix(mat)
return r.as_quat(scalar_first=scalar_first)
def ros_close(self):
if self.window.video_recording:
self.window.video_stop()
self.thread.stop()
self.video_thread.stop()
self.timer_thread.stop()
self._node.destroy_node()
rclpy.shutdown()
class PeriodicThread(threading.Thread):
def __init__(self, interval, function, *args, **kwargs):
super().__init__()
self.interval = interval
self.function = function
self.args = args
self.kwargs = kwargs
self.stop_event = threading.Event()
self._lock = threading.Lock()
def run(self):
while not self.stop_event.is_set():
start_time = time.time()
self.function(*self.args, **self.kwargs)
elapsed_time = time.time() - start_time
sleep_time = max(0, self.interval - elapsed_time)
time.sleep(sleep_time)
def stop(self):
self.stop_event.set()
def change_period(self, new_interval):
with self._lock:
self.interval = new_interval |