File size: 1,812 Bytes
9de9fbf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import os

import torch
import yaml

from models.multimodal_encoder.t5_encoder import T5Embedder


GPU = 0
MODEL_PATH = "google/t5-v1_1-xxl"
CONFIG_PATH = "configs/base.yaml"
SAVE_DIR = "lang_embed/"

# Modify this to your task name and instruction
TASK_NAME = "anubis_carrot_to_bag"
# INSTRUCTION = "take the towel off the kirby doll"
# INSTRUCTION = "insert the brush to the dustpan"
INSTRUCTION = "pick up the carrot and put into the bag"

# Note: if your GPU VRAM is less than 24GB, 
# it is recommended to enable offloading by specifying an offload directory.
# OFFLOAD_DIR = '/home/jellyho/OFFLOAD'  # Specify your offload directory here, ensuring the directory exists.

def main():
    with open(CONFIG_PATH, "r") as fp:
        config = yaml.safe_load(fp)
    
    device = torch.device(f"cuda:{GPU}")
    text_embedder = T5Embedder(
        from_pretrained=MODEL_PATH, 
        model_max_length=config["dataset"]["tokenizer_max_length"], 
        device=device,
        # use_offload_folder=OFFLOAD_DIR
    )
    tokenizer, text_encoder = text_embedder.tokenizer, text_embedder.model

    tokens = tokenizer(
        INSTRUCTION, return_tensors="pt",
        padding="longest",
        truncation=True
    )["input_ids"].to(device)

    tokens = tokens.view(1, -1)
    with torch.no_grad():
        pred = text_encoder(tokens).last_hidden_state.detach().cpu()
    
    save_path = os.path.join(SAVE_DIR, f"{TASK_NAME}.pt")
    # We save the embeddings in a dictionary format
    torch.save({
            "name": TASK_NAME,
            "instruction": INSTRUCTION,
            "embeddings": pred
        }, save_path
    )
    
    print(f'\"{INSTRUCTION}\" from \"{TASK_NAME}\" is encoded by \"{MODEL_PATH}\" into shape {pred.shape} and saved to \"{save_path}\"')


if __name__ == "__main__":
    main()