Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: qlora
auto_resume_from_checkpoints: false
base_model: bigscience/bloomz-560m
bf16: auto
chat_template: llama3
dataloader_num_workers: 12
dataset_prepared_path: null
datasets:
- data_files:
  - 0fc9bc0ad0d49381_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/0fc9bc0ad0d49381_train_data.json
  type:
    field_input: input
    field_instruction: instruction
    field_output: output
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 4
eval_max_new_tokens: 128
eval_steps: 200
eval_table_size: null
evals_per_epoch: null
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: true
hub_model_id: error577/6b3ffec3-8960-4633-9dd8-9344f00c879f
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: true
load_in_8bit: false
local_rank: null
logging_steps: 10
lora_alpha: 128
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: null
micro_batch_size: 2
mlflow_experiment_name: /tmp/0fc9bc0ad0d49381_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 200
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.002
wandb_entity: null
wandb_mode: online
wandb_name: 7af274cb-a9a3-45b8-b6c3-b1c837d298d4
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 7af274cb-a9a3-45b8-b6c3-b1c837d298d4
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null

6b3ffec3-8960-4633-9dd8-9344f00c879f

This model is a fine-tuned version of bigscience/bloomz-560m on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.2038

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss
No log 0.0000 1 2.9006
9.4598 0.0032 200 2.4428
9.0193 0.0063 400 2.4032
9.1876 0.0095 600 2.3742
9.0006 0.0126 800 2.3595
8.471 0.0158 1000 2.3460
8.8708 0.0189 1200 2.3285
8.9666 0.0221 1400 2.3163
8.9781 0.0252 1600 2.3118
8.5027 0.0284 1800 2.3064
8.4862 0.0315 2000 2.2939
8.5331 0.0347 2200 2.2867
8.6053 0.0378 2400 2.2798
8.3577 0.0410 2600 2.2777
8.7329 0.0441 2800 2.2695
8.2758 0.0473 3000 2.2647
8.6138 0.0505 3200 2.2641
8.846 0.0536 3400 2.2620
8.4359 0.0568 3600 2.2576
8.7765 0.0599 3800 2.2510
8.6455 0.0631 4000 2.2499
8.6459 0.0662 4200 2.2417
8.6934 0.0694 4400 2.2431
8.8205 0.0725 4600 2.2390
8.5673 0.0757 4800 2.2372
8.3182 0.0788 5000 2.2328
8.8069 0.0820 5200 2.2327
8.3561 0.0851 5400 2.2285
8.4872 0.0883 5600 2.2258
8.9193 0.0914 5800 2.2191
8.6298 0.0946 6000 2.2243
8.764 0.0978 6200 2.2229
8.2044 0.1009 6400 2.2133
8.6036 0.1041 6600 2.2200
8.3937 0.1072 6800 2.2183
8.6775 0.1104 7000 2.2122
8.8183 0.1135 7200 2.2136
8.9629 0.1167 7400 2.2077
8.3259 0.1198 7600 2.2085
8.5166 0.1230 7800 2.2127
8.0724 0.1261 8000 2.2054
8.4386 0.1293 8200 2.2090
8.5342 0.1324 8400 2.2019
7.7389 0.1356 8600 2.2047
8.7464 0.1387 8800 2.2020
8.6213 0.1419 9000 2.2024
8.5823 0.1451 9200 2.2038

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
1
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for error577/6b3ffec3-8960-4633-9dd8-9344f00c879f

Adapter
(373)
this model