Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
auto_resume_from_checkpoints: true
base_model: bigscience/bloomz-560m
bf16: auto
chat_template: llama3
dataset_prepared_path: null
dataset_processes: 6
datasets:
- data_files:
  - 31f811fb709cc914_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/31f811fb709cc914_train_data.json
  type:
    field_instruction: instruction
    field_output: response
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 3
eval_max_new_tokens: 128
eval_steps: 200
eval_table_size: null
evals_per_epoch: null
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: error577/39d93b8a-13bf-40e9-8ba8-8d338e0337b1
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: null
micro_batch_size: 2
mlflow_experiment_name: /tmp/31f811fb709cc914_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 200
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.005
wandb_entity: null
wandb_mode: online
wandb_name: 8a000dd1-5b3f-47db-9e70-f522ce6599ed
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 8a000dd1-5b3f-47db-9e70-f522ce6599ed
warmup_steps: 30
weight_decay: 0.0
xformers_attention: null

39d93b8a-13bf-40e9-8ba8-8d338e0337b1

This model is a fine-tuned version of bigscience/bloomz-560m on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0696

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 30
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss
9.0252 0.0002 1 2.2089
5.8772 0.0329 200 1.5151
5.6189 0.0658 400 1.4449
6.4043 0.0987 600 1.3977
5.6258 0.1315 800 1.3686
6.5765 0.1644 1000 1.3478
5.3079 0.1973 1200 1.3205
5.0516 0.2302 1400 1.3033
4.9268 0.2631 1600 1.2868
5.4649 0.2960 1800 1.2725
4.0741 0.3288 2000 1.2626
5.1813 0.3617 2200 1.2504
4.7344 0.3946 2400 1.2434
4.3783 0.4275 2600 1.2340
5.2606 0.4604 2800 1.2265
5.4076 0.4933 3000 1.2197
4.6141 0.5261 3200 1.2121
4.6438 0.5590 3400 1.2015
4.9827 0.5919 3600 1.1986
6.4062 0.6248 3800 1.1911
4.0697 0.6577 4000 1.1877
5.0534 0.6906 4200 1.1814
4.7874 0.7234 4400 1.1786
5.2285 0.7563 4600 1.1764
4.7855 0.7892 4800 1.1699
4.3143 0.8221 5000 1.1654
4.8166 0.8550 5200 1.1595
5.2696 0.8879 5400 1.1548
4.0906 0.9207 5600 1.1515
4.5442 0.9536 5800 1.1503
4.3865 0.9865 6000 1.1437
3.3439 1.0194 6200 1.1433
5.4398 1.0523 6400 1.1440
3.1569 1.0852 6600 1.1406
4.5091 1.1181 6800 1.1336
5.2349 1.1509 7000 1.1311
4.2358 1.1838 7200 1.1323
4.442 1.2167 7400 1.1288
4.3978 1.2496 7600 1.1231
3.9429 1.2825 7800 1.1220
5.2279 1.3154 8000 1.1214
4.7596 1.3482 8200 1.1181
4.8692 1.3811 8400 1.1151
4.3599 1.4140 8600 1.1113
5.431 1.4469 8800 1.1069
3.6955 1.4798 9000 1.1041
4.7102 1.5127 9200 1.1054
4.4714 1.5455 9400 1.1023
3.4939 1.5784 9600 1.1004
5.278 1.6113 9800 1.0972
3.5237 1.6442 10000 1.0961
5.3808 1.6771 10200 1.0963
4.5247 1.7100 10400 1.0937
3.4588 1.7428 10600 1.0912
4.9685 1.7757 10800 1.0906
4.4331 1.8086 11000 1.0865
4.6026 1.8415 11200 1.0863
3.8171 1.8744 11400 1.0840
3.6165 1.9073 11600 1.0831
3.7015 1.9402 11800 1.0842
4.3536 1.9730 12000 1.0788
4.0382 2.0059 12200 1.0796
4.0658 2.0388 12400 1.0780
3.0832 2.0717 12600 1.0786
4.3379 2.1046 12800 1.0747
3.4001 2.1375 13000 1.0760
3.5611 2.1703 13200 1.0739
3.4944 2.2032 13400 1.0758
3.849 2.2361 13600 1.0736
5.0364 2.2690 13800 1.0747
4.4197 2.3019 14000 1.0696
4.6541 2.3348 14200 1.0716
5.5559 2.3676 14400 1.0697
4.3708 2.4005 14600 1.0696

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
96
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for error577/39d93b8a-13bf-40e9-8ba8-8d338e0337b1

Adapter
(378)
this model