See axolotl config
axolotl version: 0.4.1
adapter: lora
auto_resume_from_checkpoints: true
base_model: bigscience/bloomz-560m
bf16: auto
chat_template: llama3
dataset_prepared_path: null
dataset_processes: 6
datasets:
- data_files:
- 31f811fb709cc914_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/31f811fb709cc914_train_data.json
type:
field_instruction: instruction
field_output: response
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 3
eval_max_new_tokens: 128
eval_steps: 200
eval_table_size: null
evals_per_epoch: null
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: error577/39d93b8a-13bf-40e9-8ba8-8d338e0337b1
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: null
micro_batch_size: 2
mlflow_experiment_name: /tmp/31f811fb709cc914_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 200
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.005
wandb_entity: null
wandb_mode: online
wandb_name: 8a000dd1-5b3f-47db-9e70-f522ce6599ed
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 8a000dd1-5b3f-47db-9e70-f522ce6599ed
warmup_steps: 30
weight_decay: 0.0
xformers_attention: null
39d93b8a-13bf-40e9-8ba8-8d338e0337b1
This model is a fine-tuned version of bigscience/bloomz-560m on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.0696
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 30
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
9.0252 | 0.0002 | 1 | 2.2089 |
5.8772 | 0.0329 | 200 | 1.5151 |
5.6189 | 0.0658 | 400 | 1.4449 |
6.4043 | 0.0987 | 600 | 1.3977 |
5.6258 | 0.1315 | 800 | 1.3686 |
6.5765 | 0.1644 | 1000 | 1.3478 |
5.3079 | 0.1973 | 1200 | 1.3205 |
5.0516 | 0.2302 | 1400 | 1.3033 |
4.9268 | 0.2631 | 1600 | 1.2868 |
5.4649 | 0.2960 | 1800 | 1.2725 |
4.0741 | 0.3288 | 2000 | 1.2626 |
5.1813 | 0.3617 | 2200 | 1.2504 |
4.7344 | 0.3946 | 2400 | 1.2434 |
4.3783 | 0.4275 | 2600 | 1.2340 |
5.2606 | 0.4604 | 2800 | 1.2265 |
5.4076 | 0.4933 | 3000 | 1.2197 |
4.6141 | 0.5261 | 3200 | 1.2121 |
4.6438 | 0.5590 | 3400 | 1.2015 |
4.9827 | 0.5919 | 3600 | 1.1986 |
6.4062 | 0.6248 | 3800 | 1.1911 |
4.0697 | 0.6577 | 4000 | 1.1877 |
5.0534 | 0.6906 | 4200 | 1.1814 |
4.7874 | 0.7234 | 4400 | 1.1786 |
5.2285 | 0.7563 | 4600 | 1.1764 |
4.7855 | 0.7892 | 4800 | 1.1699 |
4.3143 | 0.8221 | 5000 | 1.1654 |
4.8166 | 0.8550 | 5200 | 1.1595 |
5.2696 | 0.8879 | 5400 | 1.1548 |
4.0906 | 0.9207 | 5600 | 1.1515 |
4.5442 | 0.9536 | 5800 | 1.1503 |
4.3865 | 0.9865 | 6000 | 1.1437 |
3.3439 | 1.0194 | 6200 | 1.1433 |
5.4398 | 1.0523 | 6400 | 1.1440 |
3.1569 | 1.0852 | 6600 | 1.1406 |
4.5091 | 1.1181 | 6800 | 1.1336 |
5.2349 | 1.1509 | 7000 | 1.1311 |
4.2358 | 1.1838 | 7200 | 1.1323 |
4.442 | 1.2167 | 7400 | 1.1288 |
4.3978 | 1.2496 | 7600 | 1.1231 |
3.9429 | 1.2825 | 7800 | 1.1220 |
5.2279 | 1.3154 | 8000 | 1.1214 |
4.7596 | 1.3482 | 8200 | 1.1181 |
4.8692 | 1.3811 | 8400 | 1.1151 |
4.3599 | 1.4140 | 8600 | 1.1113 |
5.431 | 1.4469 | 8800 | 1.1069 |
3.6955 | 1.4798 | 9000 | 1.1041 |
4.7102 | 1.5127 | 9200 | 1.1054 |
4.4714 | 1.5455 | 9400 | 1.1023 |
3.4939 | 1.5784 | 9600 | 1.1004 |
5.278 | 1.6113 | 9800 | 1.0972 |
3.5237 | 1.6442 | 10000 | 1.0961 |
5.3808 | 1.6771 | 10200 | 1.0963 |
4.5247 | 1.7100 | 10400 | 1.0937 |
3.4588 | 1.7428 | 10600 | 1.0912 |
4.9685 | 1.7757 | 10800 | 1.0906 |
4.4331 | 1.8086 | 11000 | 1.0865 |
4.6026 | 1.8415 | 11200 | 1.0863 |
3.8171 | 1.8744 | 11400 | 1.0840 |
3.6165 | 1.9073 | 11600 | 1.0831 |
3.7015 | 1.9402 | 11800 | 1.0842 |
4.3536 | 1.9730 | 12000 | 1.0788 |
4.0382 | 2.0059 | 12200 | 1.0796 |
4.0658 | 2.0388 | 12400 | 1.0780 |
3.0832 | 2.0717 | 12600 | 1.0786 |
4.3379 | 2.1046 | 12800 | 1.0747 |
3.4001 | 2.1375 | 13000 | 1.0760 |
3.5611 | 2.1703 | 13200 | 1.0739 |
3.4944 | 2.2032 | 13400 | 1.0758 |
3.849 | 2.2361 | 13600 | 1.0736 |
5.0364 | 2.2690 | 13800 | 1.0747 |
4.4197 | 2.3019 | 14000 | 1.0696 |
4.6541 | 2.3348 | 14200 | 1.0716 |
5.5559 | 2.3676 | 14400 | 1.0697 |
4.3708 | 2.4005 | 14600 | 1.0696 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 96
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
HF Inference deployability: The model has no pipeline_tag.
Model tree for error577/39d93b8a-13bf-40e9-8ba8-8d338e0337b1
Base model
bigscience/bloomz-560m