whisper-large-v3-mn-1

This model is a fine-tuned version of openai/whisper-large-v3 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4498
  • Wer: 25.5383
  • Cer: 8.1517

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 9000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
0.1072 2.1008 1000 0.3427 33.6407 10.9806
0.0318 4.2017 2000 0.3507 30.6795 10.1042
0.0114 6.3025 3000 0.3679 28.8627 9.3444
0.0051 8.4034 4000 0.3961 28.0655 9.1306
0.0017 10.5042 5000 0.4063 27.0514 8.7835
0.0008 12.6050 6000 0.4152 26.8263 8.6231
0.0005 14.7059 7000 0.4203 26.1565 8.4644
0.0002 16.8067 8000 0.4412 25.6115 8.2113
0.0001 18.9076 9000 0.4498 25.5383 8.1517

Framework versions

  • Transformers 4.48.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
9
Safetensors
Model size
1.54B params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for erkhemee/whisper-large-v3-mn-1

Finetuned
(388)
this model

Datasets used to train erkhemee/whisper-large-v3-mn-1