FrankenBeagle-SmallOverlap-test
FrankenBeagle-SmallOverlap-test is a merge of the following models using LazyMergekit:
🧩 Configuration
slices:
- sources:
- model: mlabonne/NeuralBeagle14-7B
layer_range: [0, 24]
- sources:
- model: mlabonne/NeuralBeagle14-7B
layer_range: [18, 32]
merge_method: passthrough
dtype: bfloat16
💻 Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "eren23/FrankenBeagle-SmallOverlap-test"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 73.30 |
AI2 Reasoning Challenge (25-Shot) | 72.01 |
HellaSwag (10-Shot) | 88.16 |
MMLU (5-Shot) | 64.71 |
TruthfulQA (0-shot) | 69.69 |
Winogrande (5-shot) | 81.85 |
GSM8k (5-shot) | 63.38 |
- Downloads last month
- 53
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for eren23/FrankenBeagle-SmallOverlap-test
Evaluation results
- normalized accuracy on AI2 Reasoning Challenge (25-Shot)test set Open LLM Leaderboard72.010
- normalized accuracy on HellaSwag (10-Shot)validation set Open LLM Leaderboard88.160
- accuracy on MMLU (5-Shot)test set Open LLM Leaderboard64.710
- mc2 on TruthfulQA (0-shot)validation set Open LLM Leaderboard69.690
- accuracy on Winogrande (5-shot)validation set Open LLM Leaderboard81.850
- accuracy on GSM8k (5-shot)test set Open LLM Leaderboard63.380