e1-EMB-German-Preview-v-0.1

This is a merged sentence-transformers model. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Maximum Sequence Length: 8192 tokens
  • Output Dimensionality: 1024 tokens
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Evaluation MTEB-Tasks

Classification

  • AmazonCounterfactualClassification
  • AmazonReviewsClassification
  • MassiveIntentClassification
  • MassiveScenarioClassification
  • MTOPDomainClassification
  • MTOPIntentClassification

Pair Classification

  • FalseFriendsGermanEnglish
  • PawsXPairClassification

Retrieval

  • GermanQuAD-Retrieval
  • GermanDPR

STS (Semantic Textual Similarity)

  • GermanSTSBenchmark

Comparison

TASK Snowflake e1-EMB-German e1-EMB-German vs. Snowflake
AmazonCounterfactualClassification 0.6587 0.7152 5.65%
AmazonReviewsClassification 0.3697 0.4577 8.80%
FalseFriendsGermanEnglish 0.5360 0.5378 0.18%
GermanQuAD-Retrieval 0.9423 0.9456 0.33%
GermanSTSBenchmark 0.7499 0.8558 10.59%
MassiveIntentClassification 0.6778 0.6826 0.48%
MassiveScenarioClassification 0.7375 0.7494 1.19%
GermanDPR 0.8367 0.8330 -0.37%
MTOPDomainClassification 0.9080 0.9259 1.79%
MTOPIntentClassification 0.6675 0.7143 4.68%
PawsXPairClassification 0.5887 0.5803 -0.84%

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("embraceableAI/e1-EMB-German-Preview-v-0.1")
# Run inference
sentences = [
    'The weather is lovely today.',
    "It's so sunny outside!",
    'He drove to the stadium.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Training Details

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.2.1
  • Transformers: 4.44.2
  • PyTorch: 2.4.1+cu121
  • Accelerate: 0.34.2
  • Datasets: 3.0.1
  • Tokenizers: 0.19.1

Citation

@misc{bge-m3,
      title={BGE M3-Embedding: Multi-Lingual, Multi-Functionality, Multi-Granularity Text Embeddings Through Self-Knowledge Distillation}, 
      author={Jianlv Chen and Shitao Xiao and Peitian Zhang and Kun Luo and Defu Lian and Zheng Liu},
      year={2024},
      eprint={2402.03216},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

The embracebaleAI Team

Marcel Rosiak Soumya Paul Siavash Mollaebrahim

Downloads last month
15
Safetensors
Model size
568M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.