e1-EMB-German-Preview-v-0.1
This is a merged sentence-transformers model. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 1024 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Evaluation MTEB-Tasks
Classification
- AmazonCounterfactualClassification
- AmazonReviewsClassification
- MassiveIntentClassification
- MassiveScenarioClassification
- MTOPDomainClassification
- MTOPIntentClassification
Pair Classification
- FalseFriendsGermanEnglish
- PawsXPairClassification
Retrieval
- GermanQuAD-Retrieval
- GermanDPR
STS (Semantic Textual Similarity)
- GermanSTSBenchmark
Comparison
TASK | Snowflake | e1-EMB-German | e1-EMB-German vs. Snowflake |
---|---|---|---|
AmazonCounterfactualClassification | 0.6587 | 0.7152 | 5.65% |
AmazonReviewsClassification | 0.3697 | 0.4577 | 8.80% |
FalseFriendsGermanEnglish | 0.5360 | 0.5378 | 0.18% |
GermanQuAD-Retrieval | 0.9423 | 0.9456 | 0.33% |
GermanSTSBenchmark | 0.7499 | 0.8558 | 10.59% |
MassiveIntentClassification | 0.6778 | 0.6826 | 0.48% |
MassiveScenarioClassification | 0.7375 | 0.7494 | 1.19% |
GermanDPR | 0.8367 | 0.8330 | -0.37% |
MTOPDomainClassification | 0.9080 | 0.9259 | 1.79% |
MTOPIntentClassification | 0.6675 | 0.7143 | 4.68% |
PawsXPairClassification | 0.5887 | 0.5803 | -0.84% |
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("embraceableAI/e1-EMB-German-Preview-v-0.1")
# Run inference
sentences = [
'The weather is lovely today.',
"It's so sunny outside!",
'He drove to the stadium.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.2.1
- Transformers: 4.44.2
- PyTorch: 2.4.1+cu121
- Accelerate: 0.34.2
- Datasets: 3.0.1
- Tokenizers: 0.19.1
Citation
@misc{bge-m3,
title={BGE M3-Embedding: Multi-Lingual, Multi-Functionality, Multi-Granularity Text Embeddings Through Self-Knowledge Distillation},
author={Jianlv Chen and Shitao Xiao and Peitian Zhang and Kun Luo and Defu Lian and Zheng Liu},
year={2024},
eprint={2402.03216},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
The embracebaleAI Team
- Downloads last month
- 15
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.