BGE micro v2 ESG
This is a sentence-transformers model finetuned from TaylorAI/bge-micro-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: TaylorAI/bge-micro-v2
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("elsayovita/bge-micro-v2-esg-v2")
# Run inference
sentences = [
'Employee health and well-being has never been more topical than it was in the past year. We understand that people around the world, including our employees, have been increasingly exposed to factors affecting their physical and mental wellbeing. We are committed to creating an environment that supports our employees and ensures they feel valued and have a sense of belonging. We utilised',
"Question: What is the company's commitment towards its employees' health and well-being based on the provided context information?",
'What types of skills does NetLink focus on developing through their training and development opportunities for employees?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
dim_384
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.755 |
cosine_accuracy@3 | 0.8992 |
cosine_accuracy@5 | 0.9237 |
cosine_accuracy@10 | 0.9447 |
cosine_precision@1 | 0.755 |
cosine_precision@3 | 0.2997 |
cosine_precision@5 | 0.1847 |
cosine_precision@10 | 0.0945 |
cosine_recall@1 | 0.021 |
cosine_recall@3 | 0.025 |
cosine_recall@5 | 0.0257 |
cosine_recall@10 | 0.0262 |
cosine_ndcg@10 | 0.1891 |
cosine_mrr@10 | 0.8309 |
cosine_map@100 | 0.0231 |
Information Retrieval
- Dataset:
dim_256
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.7496 |
cosine_accuracy@3 | 0.8958 |
cosine_accuracy@5 | 0.9187 |
cosine_accuracy@10 | 0.9418 |
cosine_precision@1 | 0.7496 |
cosine_precision@3 | 0.2986 |
cosine_precision@5 | 0.1837 |
cosine_precision@10 | 0.0942 |
cosine_recall@1 | 0.0208 |
cosine_recall@3 | 0.0249 |
cosine_recall@5 | 0.0255 |
cosine_recall@10 | 0.0262 |
cosine_ndcg@10 | 0.1882 |
cosine_mrr@10 | 0.8262 |
cosine_map@100 | 0.023 |
Information Retrieval
- Dataset:
dim_128
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.7356 |
cosine_accuracy@3 | 0.8875 |
cosine_accuracy@5 | 0.9106 |
cosine_accuracy@10 | 0.9342 |
cosine_precision@1 | 0.7356 |
cosine_precision@3 | 0.2958 |
cosine_precision@5 | 0.1821 |
cosine_precision@10 | 0.0934 |
cosine_recall@1 | 0.0204 |
cosine_recall@3 | 0.0247 |
cosine_recall@5 | 0.0253 |
cosine_recall@10 | 0.0259 |
cosine_ndcg@10 | 0.1858 |
cosine_mrr@10 | 0.8144 |
cosine_map@100 | 0.0227 |
Information Retrieval
- Dataset:
dim_64
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6972 |
cosine_accuracy@3 | 0.8494 |
cosine_accuracy@5 | 0.8831 |
cosine_accuracy@10 | 0.9132 |
cosine_precision@1 | 0.6972 |
cosine_precision@3 | 0.2831 |
cosine_precision@5 | 0.1766 |
cosine_precision@10 | 0.0913 |
cosine_recall@1 | 0.0194 |
cosine_recall@3 | 0.0236 |
cosine_recall@5 | 0.0245 |
cosine_recall@10 | 0.0254 |
cosine_ndcg@10 | 0.1788 |
cosine_mrr@10 | 0.7793 |
cosine_map@100 | 0.0217 |
Information Retrieval
- Dataset:
dim_32
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.5974 |
cosine_accuracy@3 | 0.7523 |
cosine_accuracy@5 | 0.797 |
cosine_accuracy@10 | 0.8448 |
cosine_precision@1 | 0.5974 |
cosine_precision@3 | 0.2508 |
cosine_precision@5 | 0.1594 |
cosine_precision@10 | 0.0845 |
cosine_recall@1 | 0.0166 |
cosine_recall@3 | 0.0209 |
cosine_recall@5 | 0.0221 |
cosine_recall@10 | 0.0235 |
cosine_ndcg@10 | 0.1593 |
cosine_mrr@10 | 0.685 |
cosine_map@100 | 0.0191 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 11,863 training samples
- Columns:
context
andquestion
- Approximate statistics based on the first 1000 samples:
context question type string string details - min: 13 tokens
- mean: 40.74 tokens
- max: 277 tokens
- min: 11 tokens
- mean: 24.4 tokens
- max: 62 tokens
- Samples:
context question The engagement with key stakeholders involves various topics and methods throughout the year
Question: What does the engagement with key stakeholders involve throughout the year?
For unitholders and analysts, the focus is on business and operations, the release of financial results, and the overall performance and announcements
Question: What is the focus for unitholders and analysts in terms of business and operations, financial results, performance, and announcements?
These are communicated through press releases and other required disclosures via SGXNet and NetLink's website
What platform is used to communicate press releases and required disclosures for NetLink?
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 384, 256, 128, 64, 32 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 16gradient_accumulation_steps
: 16learning_rate
: 2e-05num_train_epochs
: 4lr_scheduler_type
: cosinewarmup_ratio
: 0.1bf16
: Truetf32
: Falseload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Falselocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_32_cosine_map@100 | dim_384_cosine_map@100 | dim_64_cosine_map@100 |
---|---|---|---|---|---|---|---|
0.4313 | 10 | 5.2501 | - | - | - | - | - |
0.8625 | 20 | 3.4967 | - | - | - | - | - |
1.0350 | 24 | - | 0.0221 | 0.0224 | 0.0185 | 0.0226 | 0.0210 |
1.2264 | 30 | 3.1196 | - | - | - | - | - |
1.6577 | 40 | 2.4428 | - | - | - | - | - |
2.0458 | 49 | - | 0.0226 | 0.0229 | 0.0189 | 0.0230 | 0.0215 |
2.0216 | 50 | 2.2222 | - | - | - | - | - |
2.4528 | 60 | 2.3441 | - | - | - | - | - |
2.8841 | 70 | 2.0096 | - | - | - | - | - |
3.0566 | 74 | - | 0.0227 | 0.0230 | 0.0191 | 0.0231 | 0.0217 |
3.2480 | 80 | 2.3019 | - | - | - | - | - |
3.6792 | 90 | 1.9538 | - | - | - | - | - |
3.7655 | 92 | - | 0.0227 | 0.023 | 0.0191 | 0.0231 | 0.0217 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.42.4
- PyTorch: 2.4.0+cu121
- Accelerate: 0.32.1
- Datasets: 2.21.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 5
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for elsayovita/bge-micro-v2-esg-v2
Base model
TaylorAI/bge-micro-v2Evaluation results
- Cosine Accuracy@1 on dim 384self-reported0.755
- Cosine Accuracy@3 on dim 384self-reported0.899
- Cosine Accuracy@5 on dim 384self-reported0.924
- Cosine Accuracy@10 on dim 384self-reported0.945
- Cosine Precision@1 on dim 384self-reported0.755
- Cosine Precision@3 on dim 384self-reported0.300
- Cosine Precision@5 on dim 384self-reported0.185
- Cosine Precision@10 on dim 384self-reported0.094
- Cosine Recall@1 on dim 384self-reported0.021
- Cosine Recall@3 on dim 384self-reported0.025