distilhubert-finetuned-gtzan
This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:
- Loss: 0.6823
- Accuracy: 0.86
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.9047 | 1.0 | 225 | 1.6500 | 0.47 |
1.0494 | 2.0 | 450 | 1.1409 | 0.67 |
0.5869 | 3.0 | 675 | 0.7361 | 0.79 |
0.2329 | 4.0 | 900 | 0.6651 | 0.81 |
0.3529 | 5.0 | 1125 | 0.6439 | 0.79 |
0.0822 | 6.0 | 1350 | 0.5170 | 0.86 |
0.1343 | 7.0 | 1575 | 0.5386 | 0.85 |
0.2667 | 8.0 | 1800 | 0.6507 | 0.87 |
0.0084 | 9.0 | 2025 | 0.6366 | 0.86 |
0.0082 | 10.0 | 2250 | 0.6823 | 0.86 |
Framework versions
- Transformers 4.50.0.dev0
- Pytorch 2.5.1+cu124
- Datasets 3.3.1
- Tokenizers 0.21.0
- Downloads last month
- 9
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for eeizenman/distilhubert-finetuned-gtzan
Base model
ntu-spml/distilhubert