edyfjm07/distilbert-base-uncased-v7-finetuned-squad-es
This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.0143
- Train End Logits Accuracy: 0.9966
- Train Start Logits Accuracy: 0.9932
- Validation Loss: 4.3715
- Validation End Logits Accuracy: 0.5654
- Validation Start Logits Accuracy: 0.5385
- Epoch: 49
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 14650, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
Training results
Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch |
---|---|---|---|---|---|---|
3.6949 | 0.1984 | 0.1779 | 2.8564 | 0.2769 | 0.2538 | 0 |
2.5459 | 0.3648 | 0.3635 | 2.2433 | 0.4436 | 0.4231 | 1 |
1.8293 | 0.5205 | 0.5107 | 2.1826 | 0.5013 | 0.4654 | 2 |
1.3619 | 0.6135 | 0.6067 | 2.2598 | 0.5090 | 0.4795 | 3 |
1.0012 | 0.7018 | 0.6826 | 2.4600 | 0.5308 | 0.4808 | 4 |
0.7736 | 0.7555 | 0.7624 | 2.4332 | 0.5410 | 0.5077 | 5 |
0.6124 | 0.7914 | 0.8131 | 2.7033 | 0.5410 | 0.5141 | 6 |
0.4781 | 0.8439 | 0.8498 | 2.8627 | 0.5462 | 0.5205 | 7 |
0.3867 | 0.8673 | 0.8660 | 3.0181 | 0.5449 | 0.5269 | 8 |
0.3473 | 0.8759 | 0.8882 | 3.0705 | 0.5410 | 0.5154 | 9 |
0.2735 | 0.9096 | 0.9083 | 3.1680 | 0.5590 | 0.5359 | 10 |
0.2354 | 0.9189 | 0.9206 | 3.2071 | 0.5705 | 0.5231 | 11 |
0.1955 | 0.9360 | 0.9300 | 3.4207 | 0.5449 | 0.5141 | 12 |
0.2068 | 0.9283 | 0.9296 | 3.2288 | 0.5551 | 0.5333 | 13 |
0.1852 | 0.9364 | 0.9381 | 3.5434 | 0.5385 | 0.5218 | 14 |
0.1522 | 0.9509 | 0.9471 | 3.5845 | 0.5487 | 0.5256 | 15 |
0.1404 | 0.9548 | 0.9582 | 3.6228 | 0.5628 | 0.5192 | 16 |
0.1255 | 0.9501 | 0.9578 | 3.6708 | 0.5628 | 0.5295 | 17 |
0.1253 | 0.9608 | 0.9578 | 3.7048 | 0.5564 | 0.5154 | 18 |
0.1120 | 0.9539 | 0.9633 | 3.6301 | 0.5628 | 0.5295 | 19 |
0.1043 | 0.9578 | 0.9642 | 3.6380 | 0.5474 | 0.5295 | 20 |
0.0999 | 0.9612 | 0.9659 | 3.8969 | 0.5449 | 0.5321 | 21 |
0.0845 | 0.9710 | 0.9757 | 3.9082 | 0.5590 | 0.5321 | 22 |
0.0874 | 0.9735 | 0.9689 | 3.7159 | 0.5603 | 0.5436 | 23 |
0.0700 | 0.9731 | 0.9748 | 3.9612 | 0.5564 | 0.5462 | 24 |
0.0572 | 0.9787 | 0.9774 | 4.0000 | 0.5590 | 0.5333 | 25 |
0.0628 | 0.9761 | 0.9778 | 3.8762 | 0.5551 | 0.5372 | 26 |
0.0550 | 0.9804 | 0.9821 | 3.9125 | 0.5590 | 0.5397 | 27 |
0.0586 | 0.9817 | 0.9808 | 3.9667 | 0.5603 | 0.5346 | 28 |
0.0465 | 0.9812 | 0.9838 | 3.9716 | 0.5603 | 0.5295 | 29 |
0.0438 | 0.9842 | 0.9825 | 4.0324 | 0.5577 | 0.5333 | 30 |
0.0422 | 0.9834 | 0.9872 | 4.2007 | 0.5603 | 0.5397 | 31 |
0.0427 | 0.9868 | 0.9846 | 4.1012 | 0.5513 | 0.5372 | 32 |
0.0395 | 0.9885 | 0.9855 | 4.0936 | 0.5487 | 0.5308 | 33 |
0.0355 | 0.9863 | 0.9872 | 4.1443 | 0.5667 | 0.5321 | 34 |
0.0366 | 0.9876 | 0.9881 | 4.2423 | 0.5551 | 0.5410 | 35 |
0.0323 | 0.9881 | 0.9872 | 4.3990 | 0.5513 | 0.5295 | 36 |
0.0252 | 0.9915 | 0.9893 | 4.2288 | 0.5551 | 0.5359 | 37 |
0.0285 | 0.9863 | 0.9906 | 4.3026 | 0.5654 | 0.5346 | 38 |
0.0251 | 0.9906 | 0.9915 | 4.2990 | 0.5628 | 0.5346 | 39 |
0.0313 | 0.9868 | 0.9885 | 4.2994 | 0.5679 | 0.5359 | 40 |
0.0208 | 0.9932 | 0.9932 | 4.2457 | 0.5603 | 0.5372 | 41 |
0.0225 | 0.9927 | 0.9910 | 4.4447 | 0.5628 | 0.5295 | 42 |
0.0194 | 0.9932 | 0.9919 | 4.3625 | 0.5603 | 0.5359 | 43 |
0.0189 | 0.9906 | 0.9923 | 4.3148 | 0.5679 | 0.5410 | 44 |
0.0182 | 0.9949 | 0.9927 | 4.3577 | 0.5628 | 0.5385 | 45 |
0.0160 | 0.9923 | 0.9949 | 4.3897 | 0.5615 | 0.5346 | 46 |
0.0146 | 0.9949 | 0.9936 | 4.3823 | 0.5679 | 0.5385 | 47 |
0.0163 | 0.9936 | 0.9945 | 4.3764 | 0.5667 | 0.5397 | 48 |
0.0143 | 0.9966 | 0.9932 | 4.3715 | 0.5654 | 0.5385 | 49 |
Framework versions
- Transformers 4.41.2
- TensorFlow 2.15.0
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 8
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for edyfjm07/distilbert-base-uncased-v7-finetuned-squad-es
Base model
distilbert/distilbert-base-uncased