File size: 22,777 Bytes
ed12d50
 
 
 
 
 
95deef7
ed12d50
95deef7
621f7fe
 
 
ed12d50
95deef7
ed12d50
 
60b4153
ed12d50
 
 
d49c02b
 
 
621f7fe
d49c02b
 
ed12d50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c46c4cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed12d50
 
 
 
c46c4cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed12d50
 
 
c46c4cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed12d50
 
 
 
c46c4cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed12d50
 
 
c46c4cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
---
library_name: transformers
license: apache-2.0
language:
- en
---

# EdgeRunner-Tactical-7B


![image/png](https://cdn-uploads.huggingface.co/production/uploads/668ed3dcd857a9ca47edb75c/tSyuw39VtmEqvC_wptTDf.png)

## Introduction

EdgeRunner-Tactical-7B is a powerful and efficient language model for the edge. Our mission is to build Generative AI for the edge that is safe, secure, and transparent. To that end, the EdgeRunner team is proud to release EdgeRunner-Tactical-7B, the most powerful language model for its size to date.

EdgeRunner-Tactical-7B is a 7 billion parameter language model that delivers powerful performance while demonstrating the potential of running state-of-the-art (SOTA) models at the edge.

## Highlights

- 7 billion parameters that balance power and efficiency
- SOTA performance within the 7B model range
- Initialized from Qwen2-Instruct, leveraging prior advancements
- [Self-Play Preference Optimization](https://arxiv.org/abs/2405.00675) (SPPO) applied for continuous training and alignment
- Competitive performance on several benchmarks with Meta’s Llama-3-70B, Mixtral 8x7B, and Yi 34B
- Context length of 128K tokens, ideal for extensive conversations and large-scale text tasks

## Quickstart

Below is a code snippet to show you how to load the tokenizer and model, and how to generate contents.

```python
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda" # the device to load the model onto

model = AutoModelForCausalLM.from_pretrained(
    "edgerunner-ai/EdgeRunner-Tactical-7B",
    torch_dtype="auto",
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("edgerunner-ai/EdgeRunner-Tactical-7B")

prompt = "Give me a short introduction to large language model."
messages = [
    {"role": "system", "content": "You are a helpful assistant."},
    {"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(device)

generated_ids = model.generate(
    model_inputs.input_ids,
    max_new_tokens=512
)
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]

response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
```

## Example Outputs

### Create a Quantum Future:

<img src="https://cdn-uploads.huggingface.co/production/uploads/633fe629f81b9d10135fefda/3b00jTWhIV_5OWxtW6zFI.png" width="95%">

### Ask for a structured JSON output:

<img src="https://cdn-uploads.huggingface.co/production/uploads/633fe629f81b9d10135fefda/CzW5qUh9tAkZV8k8Xs4nm.png" width="95%">


## Evaluation

In this section, we report the results for EdgeRunner-Tactical-7B models on standard automatic benchmarks. Below are the results.

### Arena-Hard Benchmark


| Model                           | Score     |   CI                | Avg Tokens  |
|:--------------------------------|:----------|:--------------------|:------------|
| gpt-4-turbo-2024-04-09          | 82.63     | (-1.71, \+1.57)     | 662.0       |
| claude-3-5-sonnet-20240620      | 79.35     | (-1.45, \+2.06)     | 567.0       |
| gpt-4o-2024-05-13               | 79.21     | (-1.50, \+1.66)     | 696.0       |
| gpt-4-0125-preview              | 77.96     | (-2.12, \+1.63)     | 619.0       |
| gpt-4o-mini                     | 74.94     | (-2.40, \+1.75)     | 668.0       |
| gemini-1.5-pro-api-0514         | 71.96     | (-2.39, \+2.10)     | 676.0       |
| yi-large-preview                | 71.48     | (-2.03, \+3.14)     | 720.0       |
| glm-4-0520                      | 63.84     | (-2.72, \+1.81)     | 636.0       |
| yi-large                        | 63.7      | (-2.72, \+2.21)     | 626.0       |
| deepseek-coder-v2               | 62.3      | (-1.73, \+2.41)     | 578.0       |
| claude-3-opus-20240229          | 60.36     | (-2.84, \+2.75)     | 541.0       |
| gemma-2-27b-it                  | 57.51     | (-2.35, \+2.46)     | 577.0       |
| glm-4-0116                      | 55.72     | (-2.51, \+2.31)     | 622.0       |
| gemini-1.5-pro-api-0409-preview | 53.37     | (-2.53, \+1.89)     | 478.0       |
| glm-4-air                       | 50.88     | (-2.60, \+2.45)     | 619.0       |
| gpt-4-0314                      | 50.0      | (-0.00, \+0.00)     | 423.0       |
| gemini-1.5-flash-api-0514       | 49.61     | (-2.93, \+2.85)     | 642.0       |
| qwen2-72b-instruct              | 46.86     | (-2.51, \+2.22)     | 515.0       |
| claude-3-sonnet-20240229        | 46.8      | (-2.94, \+2.35)     | 552.0       |
| llama-3-70b-instruct            | 46.57     | (-2.00, \+2.66)     | 591.0       |
| claude-3-haiku-20240307         | 41.47     | (-2.15, \+2.65)     | 505.0       |
| gpt-4-0613                      | 37.9      | (-2.21, \+2.51)     | 354.0       |
| mistral-large-2402              | 37.71     | (-1.88, \+2.77)     | 400.0       |
| **EdgeRunner-Tactical-7B**      | **37.47** | **(-2.74, \+2.57)** | **721.0**   |
| mixtral-8x22b-instruct-v0.1     | 36.36     | (-2.61, \+2.60)     | 430.0       |
| qwen1.5-72b-chat                | 36.12     | (-2.81, \+2.39)     | 474.0       |
| phi-3-medium-4k-instruct        | 33.37     | (-2.02, \+2.25)     | 517.0       |
| mistral-medium                  | 31.9      | (-2.54, \+2.13)     | 485.0       |
| phi-3-small-8k-instruct         | 29.77     | (-2.16, \+2.02)     | 568.0       |
| mistral-next                    | 27.37     | (-1.90, \+1.99)     | 297.0       |
| qwen2-7b-instruct           | 25.2  | (-1.55, \+2.46) | 618.0  |
| gpt-3.5-turbo-0613              | 24.82     | (-2.15, \+1.90)     | 401.0       |
| claude-2.0                      | 23.99     | (-1.90, \+1.75)     | 295.0       |
| Arcee-Spark                 | 23.52 | (-2.03, \+1.73) | 622.0   |
| mixtral-8x7b-instruct-v0.1      | 23.4      | (-1.87, \+1.73)     | 457.0       |
| gpt-3.5-turbo-0125              | 23.34     | (-1.46, \+2.31)     | 329.0       |
| yi-34b-chat                     | 23.15     | (-2.15, \+1.85)     | 611.0       |
| starling-lm-7b-beta             | 23.01     | (-1.98, \+1.71)     | 530.0       |
| claude-2.1                      | 22.77     | (-1.48, \+2.38)     | 290.0       |
| llama-3-8b-instruct             | 20.56     | (-1.65, \+2.09)     | 585.0       |
| gpt-3.5-turbo-1106              | 18.87     | (-1.79, \+2.34)     | 285.0       |
| gpt-3.5-turbo-0314              | 18.05     | (-1.47, \+2.09)     | 334.0       |
| gemini-pro                      | 17.8      | (-1.65, \+1.54)     | 322.0       |
| phi-3-mini-128k-instruct        | 15.43     | (-1.71, \+1.60)     | 609.0       |
| mistral-7b-instruct             | 12.57     | (-1.58, \+1.54)     | 541.0       |
| gemma-1.1-7b-it                 | 12.09     | (-1.35, \+1.56)     | 341.0       |
| llama-2-70b-chat                | 11.55     | (-1.18, \+1.27)     | 595.0       |
| vicuna-33b                      | 8.63      | (-0.88, \+1.28)     | 451.0       |
| gemma-7b-it                     | 7.47      | (-1.05, \+1.09)     | 378.0       |
| gemma-1.1-2b-it                 | 3.37      | (-0.67, \+0.70)     | 316.0       |
| gemma-2b-it                     | 3.0       | (-0.68, \+0.62)     | 369.0       |



### InfiniteBench

| Task Name        | GPT-4  | YaRN-Mistral-7B | Kimi-Chat | Claude 2 | Yi-6B-200K | Yi-34B-200K | Chatglm3-6B-128K | EdgeRunner-Tactical-7B | Qwen2-7B-Instruct |
|:-----------------|:-------|:----------------|:----------|:---------|:-----------|:------------|:-----------------|:-----------------------|:------------------|
| Retrieve.PassKey | 100%   | 92.71%          | 98.14%    | 97.80%   | 100.00%    | 100.00%     | 92.20%           | 100%                   | 100%              |
| Retrieve.Number  | 100%   | 56.61%          | 95.42%    | 98.14%   | 94.92%     | 100.00%     | 80.68%           | 100%                   | 99.83%            |
| Retrieve.KV      | 89.00% | < 5%            | 53.60%    | 65.40%   | < 5%       | < 5%        | < 5%             | 2.2%                   | 1.8%              |
| En.Sum           | 14.73% | 9.09%           | 17.96%    | 14.50%   | < 5%       | < 5%        | < 5%             | 33.07%                 | 29.13%            |
| En.QA            | 22.44% | 9.55%           | 16.52%    | 11.97%   | 9.20%      | 12.17%      | < 5%             | 3.4%                   | 9.09%             |
| En.MC            | 67.25% | 27.95%          | 72.49%    | 62.88%   | 36.68%     | 38.43%      | 10.48%           | 66.81%                 | 66.37%            |
| En.Dia           | 8.50%  | 7.50%           | 11.50%    | 46.50%   | < 5%       | < 5%        | < 5%             | 29%                    | 17%               |
| Zh.QA            | 25.96% | 16.98%          | 17.93%    | 9.64%    | 15.07%     | 13.61%      | < 5%             | 4.6%                   | 11.14%            |
| Code.Debug       | 37.06% | < 5%            | 17.77%    | < 5%     | 9.14%      | 13.96%      | 7.36%            | 22.08%                 | 24.61%            |
| Code.Run         | 23.25% | < 5%            | < 5%      | < 5%     | < 5%       | < 5%        | < 5%             | 0%                     | 0.5%              |
| Math.Calc        | < 5%   | < 5%            | < 5%      | < 5%     | < 5%       | < 5%        | < 5%             | 0%                     | 0%                |
| Math.Find        | 60.00% | 17.14%          | 12.57%    | 32.29%   | < 5%       | 25.71%      | 7.71%            | 29.14%                 | 31.42%            |


### GSM@ZeroEval

| Model                         | Acc       | No answer | Reason Lens |
|:------------------------------|:----------|:----------|:------------|
| Llama-3.1-405B-Instruct-Turbo | 95.91     | 0.08      | 365.07      |
| claude-3-5-sonnet-20240620    | 95.6      | 0         | 465.19      |
| claude-3-opus-20240229        | 95.6      | 0         | 410.62      |
| gpt-4o-2024-05-13             | 95.38     | 0         | 479.98      |
| gpt-4o-mini-2024-07-18        | 94.24     | 0         | 463.71      |
| deepseek-chat                 | 93.93     | 0         | 495.52      |
| deepseek-coder                | 93.78     | 0         | 566.89      |
| gemini-1.5-pro                | 93.4      | 0         | 389.17      |
| Meta-Llama-3-70B-Instruct     | 93.03     | 0         | 352.05      |
| Qwen2-72B-Instruct            | 92.65     | 0         | 375.96      |
| claude-3-sonnet-20240229      | 91.51     | 0         | 762.69      |
| gemini-1.5-flash              | 91.36     | 0         | 344.61      |
| gemma-2-27b-it@together       | 90.22     | 0         | 364.68      |
| claude-3-haiku-20240307       | 88.78     | 0         | 587.65      |
| gemma-2-9b-it                 | 87.41     | 0         | 394.83      |
| reka-core-20240501            | 87.41     | 0.08      | 414.7       |
| Athene-70B                    | 86.66     | 0.3       | 253.53      |
| Yi-1.5-34B-Chat               | 84.08     | 0.08      | 553.47      |
| Llama-3.1-8B-Instruct     | 82.87 | 0.45  | 414.19  |
| Mistral-Nemo-Instruct-2407    | 82.79     | 0         | 349.81      |
| yi-large-preview              | 82.64     | 0         | 514.25      |
| **EdgeRunner-Tactical-7B**    | **81.12** | **0.08**  | **615.89**  |
| gpt-3.5-turbo-0125            | 80.36     | 0         | 350.97      |
| command-r-plus                | 80.14     | 0.08      | 294.08      |
| Qwen2-7B-Instruct         | 80.06 | 0     | 452.6   |
| yi-large                      | 80.06     | 0         | 479.87      |
| Yi-1.5-9B-Chat                | 76.42     | 0.08      | 485.39      |
| Phi-3-mini-4k-instruct        | 75.51     | 0         | 462.53      |
| reka-flash-20240226           | 74.68     | 0.45      | 460.06      |
| Mixtral-8x7B-Instruct-v0.1    | 70.13     | 2.27      | 361.12      |
| command-r                     | 52.99     | 0         | 294.43      |
| Qwen2-1.5B-Instruct           | 43.37     | 4.78      | 301.67      |



### MMLU-REDUX@ZeroEval

| Model                         | Acc       | No answer | Reason Lens |
|:------------------------------|:----------|:----------|:------------|
| gpt-4o-2024-05-13             | 88.01     | 0.14      | 629.79      |
| claude-3-5-sonnet-20240620    | 86        | 0.18      | 907.1       |
| Llama-3.1-405B-Instruct-Turbo | 85.64     | 0.76      | 449.71      |
| gpt-4-turbo-2024-04-09        | 85.31     | 0.04      | 631.38      |
| gemini-1.5-pro                | 82.76     | 1.94      | 666.7       |
| claude-3-opus-20240229        | 82.54     | 0.58      | 500.35      |
| yi-large-preview              | 82.15     | 0.14      | 982.6       |
| gpt-4-0314                    | 81.64     | 0.04      | 397.22      |
| Qwen2-72B-Instruct            | 81.61     | 0.29      | 486.41      |
| gpt-4o-mini-2024-07-18        | 81.5      | 0.07      | 526         |
| yi-large                      | 81.17     | 0         | 774.85      |
| deepseek-chat                 | 80.81     | 0.11      | 691.91      |
| deepseek-coder                | 79.63     | 0.14      | 704.72      |
| Meta-Llama-3-70B-Instruct     | 78.01     | 0.11      | 520.77      |
| gemini-1.5-flash              | 77.36     | 1.26      | 583.45      |
| Athene-70B                    | 76.64     | 0.04      | 552.61      |
| reka-core-20240501            | 76.42     | 0.76      | 701.67      |
| gemma-2-27b-it@together       | 75.67     | 0.61      | 446.51      |
| claude-3-sonnet-20240229      | 74.87     | 0.07      | 671.75      |
| gemma-2-9b-it@nvidia          | 72.82     | 0.76      | 499         |
| Yi-1.5-34B-Chat               | 72.79     | 1.01      | 620.1       |
| claude-3-haiku-20240307       | 72.32     | 0.04      | 644.59      |
| Phi-3-mini-4k-instruct        | 70.34     | 0.43      | 677.09      |
| command-r-plus                | 68.61     | 0         | 401.51      |
| gpt-3.5-turbo-0125            | 68.36     | 0.04      | 357.92      |
| **EdgeRunner-Tactical-7B**    | **67.71** | **0.65**  | **917.6**   |
| Llama-3.1-8B-Instruct     | 67.13 | 3.38  | 399.54  |
| Qwen2-7B-Instruct         | 66.92 | 0.72  | 533.15  |
| Mistral-Nemo-Instruct-2407    | 66.88     | 0.47      | 464.19      |
| Yi-1.5-9B-Chat                | 65.05     | 4.61      | 542.87      |
| reka-flash-20240226           | 64.72     | 0.32      | 659.25      |
| Mixtral-8x7B-Instruct-v0.1    | 63.17     | 5.51      | 324.31      |
| Meta-Llama-3-8B-Instruct      | 61.66     | 0.97      | 600.81      |
| command-r                     | 61.12     | 0.04      | 382.23      |
| Qwen2-1.5B-Instruct           | 41.11     | 7.74      | 280.56      |

### WildBench

| Model                      | WB_Elo      | RewardScore_Avg | task_macro_reward.K=-1 | Length      |
|:---------------------------|:------------|:----------------|:-----------------------|:------------|
| gpt-4o-2024-05-13          | 1248.12     | 50.05           | 40.80                  | 3723.52     |
| claude-3-5-sonnet-20240620 | 1229.76     | 46.16           | 37.63                  | 2911.85     |
| gpt-4-turbo-2024-04-09     | 1225.29     | 46.19           | 37.17                  | 3093.17     |
| gpt-4-0125-preview         | 1211.44     | 41.24           | 30.20                  | 3335.64     |
| gemini-1.5-pro             | 1209.23     | 45.27           | 37.59                  | 3247.97     |
| yi-large-preview           | 1209.00     | 46.92           | 38.54                  | 3512.68     |
| claude-3-opus-20240229     | 1206.56     | 37.03           | 22.35                  | 2685.98     |
| Meta-Llama-3-70B-Instruct  | 1197.72     | 35.15           | 22.54                  | 3046.64     |
| Athene-70B                 | 1197.41     | 29.77           | 0.00                   | 3175.14     |
| deepseek-coder-v2          | 1194.11     | 29.39           | 11.38                  | 2795.31     |
| gpt-4o-mini-2024-07-18     | 1192.43     | 28.57           | 0.00                   | 3648.13     |
| yi-large                   | 1191.88     | 33.35           | 17.77                  | 3095.34     |
| gemini-1.5-flash           | 1190.30     | 37.45           | 26.04                  | 3654.40     |
| deepseek-v2-chat-0628      | 1188.07     | 27.00           | 0.00                   | 3252.38     |
| gemma-2-9b-it-SimPO        | 1184.67     | 26.64           | 0.00                   | 4277.67     |
| gemma-2-9b-it-DPO          | 1182.43     | 26.61           | 0.00                   | 3982.63     |
| nemotron-4-340b-instruct   | 1181.77     | 33.76           | 19.85                  | 2754.01     |
| claude-3-sonnet-20240229   | 1179.81     | 28.09           | 10.70                  | 2670.24     |
| deepseekv2-chat            | 1178.76     | 30.41           | 12.60                  | 2896.97     |
| gemma-2-27b-it@together    | 1178.34     | 24.27           | 0.00                   | 2924.55     |
| Qwen2-72B-Instruct         | 1176.75     | 24.77           | 5.03                   | 2856.45     |
| reka-core-20240501         | 1173.85     | 31.48           | 17.06                  | 2592.59     |
| Mistral-Nemo-Instruct-2407 | 1165.29     | 22.19           | 0.00                   | 3318.21     |
| Yi-1.5-34B-Chat            | 1163.69     | 30.83           | 16.06                  | 3523.56     |
| **EdgeRunner-Tactical-7B** | **1162.88** | **22.26**       | **0.00**               | **3754.66** |
| claude-3-haiku-20240307    | 1160.56     | 16.30           | -6.30                  | 2601.03     |
| mistral-large-2402         | 1159.72     | 13.27           | -12.36                 | 2514.98     |
| deepseek-v2-coder-0628     | 1155.97     | 22.83           | 0.00                   | 2580.18     |
| gemma-2-9b-it              | 1154.30     | 21.35           | 0.00                   | 2802.89     |
| command-r-plus             | 1153.15     | 16.58           | -3.60                  | 3293.81     |
| glm-4-9b-chat              | 1152.68     | 20.71           | 2.33                   | 3692.04     |
| Qwen1.5-72B-Chat-greedy    | 1151.97     | 20.83           | 1.72                   | 2392.36     |
| Yi-1.5-9B-Chat             | 1151.43     | 21.80           | 4.93                   | 3468.23     |
| Meta-Llama-3-8B-Instruct   | 1140.76     | 6.72            | -15.76                 | 2975.19     |
| Qwen2-7B-Instruct      | 1137.66 | 16.20       | 0.00               | 3216.43 |
| Starling-LM-7B-beta-ExPO   | 1137.58     | 11.28           | -9.01                  | 2835.83     |
| Hermes-2-Theta-Llama-3-8B  | 1135.99     | 3.18            | -23.28                 | 2742.17     |
| Llama-3.1-8B-Instruct  | 1135.42 | 16.38       | 0.00               | 3750.60 |



### AlpacaEval 2.0

| Model                       | Length Controlled Winrate | Win Rate  | N Total | Avg Length |
|:----------------------------|:--------------------------|:----------|:--------|:-----------|
| gpt-4o-2024-05-13           | 57.46                     | 51.33     | 805     | 1873       |
| gpt-4-turbo-2024-04-09      | 55.02                     | 46.12     | 805     | 1802       |
| claude-3-5-sonnet-20240620  | 52.37                     | 40.56     | 805     | 1488       |
| yi-large-preview            | 51.89                     | 57.47     | 805     | 2335       |
| gpt4\_1106\_preview         | 50.0                      | 50.0      | 805     | 2049       |
| Qwen1.5-110B-Chat           | 43.91                     | 33.78     | 805     | 1631       |
| claude-3-opus-20240229      | 40.51                     | 29.11     | 805     | 1388       |
| gpt4                        | 38.13                     | 23.58     | 805     | 1365       |
| Qwen1.5-72B-Chat            | 36.57                     | 26.5      | 805     | 1549       |
| gpt4\_0314                  | 35.31                     | 22.07     | 805     | 1371       |
| Meta-Llama-3-70B-Instruct   | 34.42                     | 33.18     | 805     | 1919       |
| **EdgeRunner-Tactical-7B**  | **34.41**                 | **51.28** | **805** | **2735**   |
| mistral-large-2402          | 32.65                     | 21.44     | 805     | 1362       |
| Mixtral-8x22B-Instruct-v0.1 | 30.88                     | 22.21     | 805     | 1445       |
| gpt4\_0613                  | 30.18                     | 15.76     | 805     | 1140       |
| mistral-medium              | 28.61                     | 21.86     | 805     | 1500       |
| claude-2                    | 28.16                     | 17.19     | 805     | 1069       |
| Samba-CoE-v0.2              | 27.62                     | 21.85     | 805     | 1469       |
| internlm2-chat-20b-ExPO     | 27.23                     | 46.19     | 805     | 3335       |
| Yi-34B-Chat                 | 27.19                     | 29.66     | 805     | 2123       |
| Starling-LM-7B-beta-ExPO    | 26.41                     | 29.6      | 805     | 2215       |
| Llama-3.1-8B-Instruct   | 26.41                 | 30.32 | 805 | 2171   |
| Snorkel-Mistral-PairRM-DPO  | 26.39                     | 30.22     | 804     | 2736       |
| Arcee-Spark             | 25.58                 | 26.19 | 805 | 2002   |
| claude-2.1                  | 25.25                     | 15.73     | 805     | 1096       |
| gemini-pro                  | 24.38                     | 18.18     | 805     | 1456       |
| Qwen1.5-14B-Chat            | 23.9                      | 18.65     | 805     | 1607       |
| Mixtral-8x7B-Instruct-v0.1  | 23.69                     | 18.26     | 805     | 1465       |
| Meta-Llama-3-8B-Instruct    | 22.92                     | 22.57     | 805     | 1899       |
| Samba-CoE-v0.1              | 22.87                     | 16.84     | 805     | 1316       |
| gpt-3.5-turbo-0613          | 22.35                     | 14.1      | 805     | 1331       |
| Qwen2-7B-Instruct       | 21.51                 | 18.93 | 805 | 1793   |
| gpt-3.5-turbo-1106          | 19.3                      | 9.18      | 805     | 796        |
| internlm2-chat-20b-ppo      | 18.75                     | 21.75     | 805     | 2373       |
| claude-2.1\_concise         | 18.21                     | 9.23      | 805     | 573        |
| gpt-3.5-turbo-0301          | 18.09                     | 9.62      | 805     | 827        |
| deepseek-llm-67b-chat       | 17.84                     | 12.09     | 805     | 1151       |
| vicuna-33b-v1.3             | 17.57                     | 12.71     | 805     | 1479       |
| Mistral-7B-Instruct-v0.2    | 17.11                     | 14.72     | 805     | 1676       |
| OpenHermes-2.5-Mistral-7B   | 16.25                     | 10.34     | 805     | 1107       |
| Qwen1.5-7B-Chat             | 14.75                     | 11.77     | 805     | 1594       |