edgerunner-research
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -1,9 +1,251 @@
|
|
1 |
-
|
2 |
-
|
|
|
|
|
|
|
|
|
3 |
|
4 |
-
|
5 |
-
![image/png](https://cdn-uploads.huggingface.co/production/uploads/668ed3dcd857a9ca47edb75c/kFiab1FT9LW7CfzFHPNO4.png)
|
6 |
|
7 |
-
|
8 |
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: apache-2.0
|
4 |
+
language:
|
5 |
+
- en
|
6 |
+
---
|
7 |
|
8 |
+
# EdgeRunner-Tactical-7B
|
|
|
9 |
|
10 |
+
## Introduction
|
11 |
|
12 |
+
EdgeRunner-Tactical-7B is a powerful and efficient language model for the edge. Our mission is to build Generative AI for the edge that is safe, secure, and transparent. To that end, the EdgeRunner team is proud to release EdgeRunner-Tactical-7B, the most powerful language model for its size to date.
|
13 |
+
|
14 |
+
EdgeRunner-Tactical-7B is a 7 billion parameter language model that delivers powerful performance while demonstrating the potential of running state-of-the-art (SOTA) models at the edge. It is the highest-scoring model in the 7B-XXB range, outperforming Gemini Pro, Mixtral-8x7B, and Meta-Llama-3-8B-Instruct. EdgeRunner-Tactical-7B also outperforms larger models, including GPT-4o mini and Mistral Large on the Arena Hard Benchmark.
|
15 |
+
|
16 |
+
## Highlights
|
17 |
+
|
18 |
+
- 7 billion parameters
|
19 |
+
- SOTA performance for its size
|
20 |
+
- Initialized from Qwen2-Instruct
|
21 |
+
- Applied Self-Play Preference Optimization ([SPPO](https://arxiv.org/abs/2405.00675)) for continuous training on Qwen2-Instruct
|
22 |
+
- Outperforms Mistral Large
|
23 |
+
- Outperforms Mixtral-8x7B
|
24 |
+
- Approaches Meta Llama-3-70B
|
25 |
+
- Supports a context length of 128K tokens, making it ideal for tasks requiring many conversation turns or working with large amounts of text
|
26 |
+
|
27 |
+
|
28 |
+
## Quickstart
|
29 |
+
|
30 |
+
Below is a code snippet to show you how to load the tokenizer and model, and how to generate contents.
|
31 |
+
|
32 |
+
```python
|
33 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
34 |
+
device = "cuda" # the device to load the model onto
|
35 |
+
|
36 |
+
model = AutoModelForCausalLM.from_pretrained(
|
37 |
+
"edgerunner-ai/EdgeRunner-Tactical-7B",
|
38 |
+
torch_dtype="auto",
|
39 |
+
device_map="auto"
|
40 |
+
)
|
41 |
+
tokenizer = AutoTokenizer.from_pretrained("edgerunner-ai/EdgeRunner-Tactical-7B")
|
42 |
+
|
43 |
+
prompt = "Give me a short introduction to large language model."
|
44 |
+
messages = [
|
45 |
+
{"role": "system", "content": "You are a helpful assistant."},
|
46 |
+
{"role": "user", "content": prompt}
|
47 |
+
]
|
48 |
+
text = tokenizer.apply_chat_template(
|
49 |
+
messages,
|
50 |
+
tokenize=False,
|
51 |
+
add_generation_prompt=True
|
52 |
+
)
|
53 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(device)
|
54 |
+
|
55 |
+
generated_ids = model.generate(
|
56 |
+
model_inputs.input_ids,
|
57 |
+
max_new_tokens=512
|
58 |
+
)
|
59 |
+
generated_ids = [
|
60 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
61 |
+
]
|
62 |
+
|
63 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
64 |
+
```
|
65 |
+
|
66 |
+
## Example Outputs
|
67 |
+
|
68 |
+
### Create a Quantum Future:
|
69 |
+
|
70 |
+
<img src="https://cdn-uploads.huggingface.co/production/uploads/633fe629f81b9d10135fefda/3b00jTWhIV_5OWxtW6zFI.png" width="95%">
|
71 |
+
|
72 |
+
### Ask for a structured JSON output:
|
73 |
+
|
74 |
+
<img src="https://cdn-uploads.huggingface.co/production/uploads/633fe629f81b9d10135fefda/CzW5qUh9tAkZV8k8Xs4nm.png" width="95%">
|
75 |
+
|
76 |
+
|
77 |
+
## Evaluation
|
78 |
+
|
79 |
+
In this section, we report the results for EdgeRunner-Tactical-7B models on standard automatic benchmarks. Below are the results.
|
80 |
+
|
81 |
+
### Arena-Hard Benchmark
|
82 |
+
|
83 |
+
| Model | Score | 95% CI | Avg #Tokens |
|
84 |
+
| :----------------------------- | :----: | :------: | :---------: |
|
85 |
+
| gpt-4-turbo-2024-04-09 | 82.6 | (-1.6, 2.1) | 662 |
|
86 |
+
| gpt-4-0125-preview | 78.0 | (-1.8, 2.1) | 619 |
|
87 |
+
| claude-3-opus-20240229 | 60.4 | (-2.8, 2.6) | 541 |
|
88 |
+
| gpt-4-0314 | 50.0 | (0.0, 0.0) | 423 |
|
89 |
+
| claude-3-haiku-20240307 | 41.5 | (-2.5, 2.9) | 505 |
|
90 |
+
| llama-3-70b-chat-hf | 41.1 | (-2.7, 1.7) | 583 |
|
91 |
+
| EdgeRunner-Tactical-7B | 38.2 | (-2.3, 2.7) | 719 |
|
92 |
+
| gpt-4-0613 | 37.9 | (-2.2, 2.6) | 354 |
|
93 |
+
| mistral-large-2402 | 37.7 | (-1.9, 2.0) | 400 |
|
94 |
+
| mixtral-8x22b-instruct-v0.1 | 36.4 | (-2.0, 2.0) | 430 |
|
95 |
+
| Qwen1.5-72B-Chat | 36.1 | (-2.3, 2.4) | 474 |
|
96 |
+
| command-r-plus | 33.1 | (-2.6, 2.0) | 541 |
|
97 |
+
| mistral-medium | 31.9 | (-2.1, 2.1) | 485 |
|
98 |
+
| gpt-3.5-turbo-0613 | 24.8 | (-2.2, 1.7) | 401 |
|
99 |
+
| dbrx-instruct | 24.6 | (-2.0, 2.4) | 415 |
|
100 |
+
| Qwen2-7B-Instruct | 23.5 | (-1.9, 2.0) | 605 |
|
101 |
+
| Mixtral-8x7B-Instruct-v0.1 | 23.4 | (-1.9, 1.9) | 457 |
|
102 |
+
| gpt-3.5-turbo-0125 | 23.3 | (-1.9, 2.0) | 329 |
|
103 |
+
|
104 |
+
|
105 |
+
### InfiniteBench
|
106 |
+
|
107 |
+
| Task Name | GPT-4 | YaRN-Mistral-7B | Kimi-Chat | Claude 2 | Yi-6B-200K | Yi-34B-200K | Chatglm3-6B-128K | EdgeRunner-Tactical-7B | Qwen2-7B-Instruct |
|
108 |
+
|-----------------|-------|------------------|-----------|----------|------------|-------------|------------------|------------------------|-------------------|
|
109 |
+
| Retrieve.PassKey| 100% | 92.71% | 98.14% | 97.80% | 100.00% | 100.00% | 92.20% | 100% | 100% |
|
110 |
+
| Retrieve.Number | 100% | 56.61% | 95.42% | 98.14% | 94.92% | 100.00% | 80.68% | 100% | 99.83% |
|
111 |
+
| Retrieve.KV | 89.00%| < 5% | 53.60% | 65.40% | < 5% | < 5% | < 5% | 2.2% | 1.8% |
|
112 |
+
| En.Sum | 14.73%| 9.09% | 17.96% | 14.50% | < 5% | < 5% | < 5% | 33.07% | 29.13% |
|
113 |
+
| En.QA | 22.44%| 9.55% | 16.52% | 11.97% | 9.20% | 12.17% | < 5% | 3.4% | 9.09% |
|
114 |
+
| En.MC | 67.25%| 27.95% | 72.49% | 62.88% | 36.68% | 38.43% | 10.48% | 66.81% | 66.37% |
|
115 |
+
| En.Dia | 8.50% | 7.50% | 11.50% | 46.50% | < 5% | < 5% | < 5% | 29% | 17% |
|
116 |
+
| Zh.QA | 25.96%| 16.98% | 17.93% | 9.64% | 15.07% | 13.61% | < 5% | 4.6% | 11.14% |
|
117 |
+
| Code.Debug | 37.06%| < 5% | 17.77% | < 5% | 9.14% | 13.96% | 7.36% | 22.08% | 24.61% |
|
118 |
+
| Code.Run | 23.25%| < 5% | < 5% | < 5% | < 5% | < 5% | < 5% | 0% | 0.5% |
|
119 |
+
| Math.Calc | < 5% | < 5% | < 5% | < 5% | < 5% | < 5% | < 5% | 0% | 0% |
|
120 |
+
| Math.Find | 60.00%| 17.14% | 12.57% | 32.29% | < 5% | 25.71% | 7.71% | 29.14% | 31.42% |
|
121 |
+
|
122 |
+
### GSM@ZeroEval
|
123 |
+
|
124 |
+
| Model | Acc | No Answer | Reason Lens |
|
125 |
+
|-------------------------------------|--------|-----------|-------------|
|
126 |
+
| Llama-3.1-405B-Instruct-Turbo | 95.91 | 0.08 | 365.07 |
|
127 |
+
| claude-3-5-sonnet-20240620 | 95.6 | 0 | 465.19 |
|
128 |
+
| claude-3-opus-20240229 | 95.6 | 0 | 410.62 |
|
129 |
+
| gpt-4o-2024-05-13 | 95.38 | 0 | 479.98 |
|
130 |
+
| gpt-4o-mini-2024-07-18 | 94.24 | 0 | 463.71 |
|
131 |
+
| deepseek-chat | 93.93 | 0 | 495.52 |
|
132 |
+
| deepseek-coder | 93.78 | 0 | 566.89 |
|
133 |
+
| gemini-1.5-pro | 93.4 | 0 | 389.17 |
|
134 |
+
| Meta-Llama-3-70B-Instruct | 93.03 | 0 | 352.05 |
|
135 |
+
| Qwen2-72B-Instruct | 92.65 | 0 | 375.96 |
|
136 |
+
| claude-3-sonnet-20240229 | 91.51 | 0 | 762.69 |
|
137 |
+
| gemini-1.5-flash | 91.36 | 0 | 344.61 |
|
138 |
+
| gemma-2-27b-it@together | 90.22 | 0 | 364.68 |
|
139 |
+
| claude-3-haiku-20240307 | 88.78 | 0 | 587.65 |
|
140 |
+
| gemma-2-9b-it | 87.41 | 0 | 394.83 |
|
141 |
+
| reka-core-20240501 | 87.41 | 0.08 | 414.7 |
|
142 |
+
| Athene-70B | 86.66 | 0.3 | 253.53 |
|
143 |
+
| Yi-1.5-34B-Chat | 84.08 | 0.08 | 553.47 |
|
144 |
+
| Llama-3.1-8B-Instruct | 82.87 | 0.45 | 414.19 |
|
145 |
+
| Mistral-Nemo-Instruct-2407 | 82.79 | 0 | 349.81 |
|
146 |
+
| yi-large-preview | 82.64 | 0 | 514.25 |
|
147 |
+
| EdgeRunner-Tactical-7B | 81.12 | 0.08 | 615.89 |
|
148 |
+
| gpt-3.5-turbo-0125 | 80.36 | 0 | 350.97 |
|
149 |
+
| command-r-plus | 80.14 | 0.08 | 294.08 |
|
150 |
+
| Qwen2-7B-Instruct | 80.06 | 0 | 452.6 |
|
151 |
+
| yi-large | 80.06 | 0 | 479.87 |
|
152 |
+
| Meta-Llama-3-8B-Instruct | 78.47 | 0 | 429.39 |
|
153 |
+
| Yi-1.5-9B-Chat | 76.42 | 0.08 | 485.39 |
|
154 |
+
| Phi-3-mini-4k-instruct | 75.51 | 0 | 462.53 |
|
155 |
+
| reka-flash-20240226 | 74.68 | 0.45 | 460.06 |
|
156 |
+
| Meta-Llama-3.1-8B-Instruct | 72.33 | 0.38 | 483.41 |
|
157 |
+
| Mixtral-8x7B-Instruct-v0.1 | 70.13 | 2.27 | 361.12 |
|
158 |
+
| Llama-3-Instruct-8B-SimPO-v0.2 | 57.54 | 2.05 | 505.25 |
|
159 |
+
| command-r | 52.99 | 0 | 294.43 |
|
160 |
+
| Qwen2-1.5B-Instruct | 43.37 | 4.78 | 301.67 |
|
161 |
+
|
162 |
+
|
163 |
+
### MMLU-REDUX@ZeroEval
|
164 |
+
|
165 |
+
| Model | Acc | No answer | Reason Lens |
|
166 |
+
|------------------------------------|-------|-----------|-------------|
|
167 |
+
| gpt-4o-2024-05-13 | 88.01 | 0.14 | 629.79 |
|
168 |
+
| claude-3-5-sonnet-20240620 | 86 | 0.18 | 907.1 |
|
169 |
+
| Llama-3.1-405B-Instruct-Turbo | 85.64 | 0.76 | 449.71 |
|
170 |
+
| gpt-4-turbo-2024-04-09 | 85.31 | 0.04 | 631.38 |
|
171 |
+
| gemini-1.5-pro | 82.76 | 1.94 | 666.7 |
|
172 |
+
| claude-3-opus-20240229 | 82.54 | 0.58 | 500.35 |
|
173 |
+
| yi-large-preview | 82.15 | 0.14 | 982.6 |
|
174 |
+
| gpt-4-0314 | 81.64 | 0.04 | 397.22 |
|
175 |
+
| Qwen2-72B-Instruct | 81.61 | 0.29 | 486.41 |
|
176 |
+
| gpt-4o-mini-2024-07-18 | 81.5 | 0.07 | 526 |
|
177 |
+
| yi-large | 81.17 | 0 | 774.85 |
|
178 |
+
| deepseek-chat | 80.81 | 0.11 | 691.91 |
|
179 |
+
| deepseek-coder | 79.63 | 0.14 | 704.72 |
|
180 |
+
| Meta-Llama-3-70B-Instruct | 78.01 | 0.11 | 520.77 |
|
181 |
+
| gemini-1.5-flash | 77.36 | 1.26 | 583.45 |
|
182 |
+
| Athene-70B | 76.64 | 0.04 | 552.61 |
|
183 |
+
| reka-core-20240501 | 76.42 | 0.76 | 701.67 |
|
184 |
+
| gemma-2-27b-it@together | 75.67 | 0.61 | 446.51 |
|
185 |
+
| claude-3-sonnet-20240229 | 74.87 | 0.07 | 671.75 |
|
186 |
+
| gemma-2-9b-it@nvidia | 72.82 | 0.76 | 499 |
|
187 |
+
| Yi-1.5-34B-Chat | 72.79 | 1.01 | 620.1 |
|
188 |
+
| claude-3-haiku-20240307 | 72.32 | 0.04 | 644.59 |
|
189 |
+
| Phi-3-mini-4k-instruct | 70.34 | 0.43 | 677.09 |
|
190 |
+
| command-r-plus | 68.61 | 0 | 401.51 |
|
191 |
+
| gpt-3.5-turbo-0125 | 68.36 | 0.04 | 357.92 |
|
192 |
+
| EdgeRunner-Tactical-7B | 67.71 | 0.65 | 917.6 |
|
193 |
+
| Llama-3.1-8B-Instruct | 67.13 | 3.38 | 399.54 |
|
194 |
+
| Qwen2-7B-Instruct | 66.92 | 0.72 | 533.15 |
|
195 |
+
| Mistral-Nemo-Instruct-2407 | 66.88 | 0.47 | 464.19 |
|
196 |
+
| Yi-1.5-9B-Chat | 65.05 | 4.61 | 542.87 |
|
197 |
+
| Meta-Llama-3.1-8B-Instruct | 64.79 | 1.94 | 463.76 |
|
198 |
+
| reka-flash-20240226 | 64.72 | 0.32 | 659.25 |
|
199 |
+
| Mixtral-8x7B-Instruct-v0.1 | 63.17 | 5.51 | 324.31 |
|
200 |
+
| Meta-Llama-3-8B-Instruct | 61.66 | 0.97 | 600.81 |
|
201 |
+
| command-r | 61.12 | 0.04 | 382.23 |
|
202 |
+
| Llama-3-Instruct-8B-SimPO-v0.2 | 55.22 | 1.19 | 450.6 |
|
203 |
+
| Qwen2-1.5B-Instruct | 41.11 | 7.74 | 280.56 |
|
204 |
+
|
205 |
+
### WildBench
|
206 |
+
|
207 |
+
| Model | WB_Elo | RewardScore_Avg | task_macro_reward.K=-1 | Length |
|
208 |
+
|-------------------------------------|---------|-----------------|------------------------|----------|
|
209 |
+
| gpt-4o-2024-05-13 | 1248.12 | 50.05 | 40.80 | 3723.52 |
|
210 |
+
| claude-3-5-sonnet-20240620 | 1229.76 | 46.16 | 37.63 | 2911.85 |
|
211 |
+
| gpt-4-turbo-2024-04-09 | 1225.29 | 46.19 | 37.17 | 3093.17 |
|
212 |
+
| gpt-4-0125-preview | 1211.44 | 41.24 | 30.20 | 3335.64 |
|
213 |
+
| gemini-1.5-pro | 1209.23 | 45.27 | 37.59 | 3247.97 |
|
214 |
+
| yi-large-preview | 1209.00 | 46.92 | 38.54 | 3512.68 |
|
215 |
+
| claude-3-opus-20240229 | 1206.56 | 37.03 | 22.35 | 2685.98 |
|
216 |
+
| Meta-Llama-3-70B-Instruct | 1197.72 | 35.15 | 22.54 | 3046.64 |
|
217 |
+
| Athene-70B | 1197.41 | 29.77 | 0.00 | 3175.14 |
|
218 |
+
| deepseek-coder-v2 | 1194.11 | 29.39 | 11.38 | 2795.31 |
|
219 |
+
| gpt-4o-mini-2024-07-18 | 1192.43 | 28.57 | 0.00 | 3648.13 |
|
220 |
+
| yi-large | 1191.88 | 33.35 | 17.77 | 3095.34 |
|
221 |
+
| gemini-1.5-flash | 1190.30 | 37.45 | 26.04 | 3654.40 |
|
222 |
+
| deepseek-v2-chat-0628 | 1188.07 | 27.00 | 0.00 | 3252.38 |
|
223 |
+
| gemma-2-9b-it-SimPO | 1184.67 | 26.64 | 0.00 | 4277.67 |
|
224 |
+
| gemma-2-9b-it-DPO | 1182.43 | 26.61 | 0.00 | 3982.63 |
|
225 |
+
| nemotron-4-340b-instruct | 1181.77 | 33.76 | 19.85 | 2754.01 |
|
226 |
+
| claude-3-sonnet-20240229 | 1179.81 | 28.09 | 10.70 | 2670.24 |
|
227 |
+
| deepseekv2-chat | 1178.76 | 30.41 | 12.60 | 2896.97 |
|
228 |
+
| gemma-2-27b-it@together | 1178.34 | 24.27 | 0.00 | 2924.55 |
|
229 |
+
| Qwen2-72B-Instruct | 1176.75 | 24.77 | 5.03 | 2856.45 |
|
230 |
+
| reka-core-20240501 | 1173.85 | 31.48 | 17.06 | 2592.59 |
|
231 |
+
| Mistral-Nemo-Instruct-2407 | 1165.29 | 22.19 | 0.00 | 3318.21 |
|
232 |
+
| Yi-1.5-34B-Chat | 1163.69 | 30.83 | 16.06 | 3523.56 |
|
233 |
+
| EdgeRunner-Tactical-7B | 1162.88 | 22.26 | 0.00 | 3754.66 |
|
234 |
+
| claude-3-haiku-20240307 | 1160.56 | 16.30 | -6.30 | 2601.03 |
|
235 |
+
| mistral-large-2402 | 1159.72 | 13.27 | -12.36 | 2514.98 |
|
236 |
+
| deepseek-v2-coder-0628 | 1155.97 | 22.83 | 0.00 | 2580.18 |
|
237 |
+
| gemma-2-9b-it | 1154.30 | 21.35 | 0.00 | 2802.89 |
|
238 |
+
| Llama-3-8B-Magpie-Align-v0.1 | 1154.13 | 28.72 | 18.14 | 3107.77 |
|
239 |
+
| command-r-plus | 1153.15 | 16.58 | -3.60 | 3293.81 |
|
240 |
+
| glm-4-9b-chat | 1152.68 | 20.71 | 2.33 | 3692.04 |
|
241 |
+
| Qwen1.5-72B-Chat-greedy | 1151.97 | 20.83 | 1.72 | 2392.36 |
|
242 |
+
| Yi-1.5-9B-Chat | 1151.43 | 21.80 | 4.93 | 3468.23 |
|
243 |
+
| Llama-3-Instruct-8B-SimPO | 1151.38 | 23.31 | 9.57 | 2541.93 |
|
244 |
+
| Llama-3-Instruct-8B-SimPO-v0.2 | 1150.81 | 18.58 | 0.00 | 2533.76 |
|
245 |
+
| SELM-Llama-3-8B-Instruct-iter-3 | 1148.03 | 17.89 | 0.53 | 2913.15 |
|
246 |
+
| Llama-3-Instruct-8B-SimPO-ExPO | 1147.24 | 21.39 | 7.77 | 2480.65 |
|
247 |
+
| Meta-Llama-3-8B-Instruct | 1140.76 | 6.72 | -15.76 | 2975.19 |
|
248 |
+
| Qwen2-7B-Instruct | 1137.66 | 16.20 | 0.00 | 3216.43 |
|
249 |
+
| Starling-LM-7B-beta-ExPO | 1137.58 | 11.28 | -9.01 | 2835.83 |
|
250 |
+
| Hermes-2-Theta-Llama-3-8B | 1135.99 | 3.18 | -23.28 | 2742.17 |
|
251 |
+
| Llama-3.1-8B-Instruct | 1135.42 | 16.38 | 0.00 | 3750.60 |
|