metadata
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6300
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-base-en-v1.5
widget:
- source_sentence: >-
The audit on Equifax Inc.'s internal control over financial reporting and
consolidated financial statements as of December 31, 2023, was conducted
by Ernst & Young LLP.
sentences:
- >-
What percentage of HP's full-time leadership positions were held by
women in the fiscal year 2023?
- >-
What accounting firm conducted the audit on Equifax Inc.'s internal
control over financial reporting and consolidated financial statements
as of December 31, 2023?
- >-
What was the total net sales reported by Costco Wholesale Corporation
for the 53-week period ended September 3, 2023?
- source_sentence: >-
The company recruits and hires using local job fairs, social media, and
community service partners, and supports employees through competitive
pay, benefits, and human capital programs focused on professional growth,
diversity, equity, and inclusion.
sentences:
- >-
What position did Jon Faust hold before becoming the Global Controller
at HP?
- How does the company recruit and support its employees?
- >-
What was the main driver behind the increase in the provision for credit
losses at Bank of America in 2023?
- source_sentence: >-
Management’s Report on Internal Control Over Financial Reporting outlines
the responsibility of management in maintaining effective internal
controls over financial reporting. This involves setting policies, using
advanced systems for processing transactions, and maintaining a qualified
staff to handle financial procedures. Regular assessments and corrective
measures ensure these controls remain effective.
sentences:
- >-
What is the role of management in maintaining internal control over
financial reporting at a company?
- >-
How much cash and cash equivalents did the company have at the end of
2023, and how does this compare to the end of 2022?
- How does AT&T emphasize diversity in its hiring practices?
- source_sentence: >-
Net cash provided by operating activities increased from $1,681 million in
2022 to $1,946 million in 2023, marking a 15.8% increase.
sentences:
- >-
Are the consolidated financial statements and accompanying notes part of
ITEM 8 in the Annual Report on Form 10-K?
- >-
What is the expected benefit of the Pasadena Refinery project for
Chevron?
- >-
What was the percentage increase in net cash provided by operating
activities from 2022 to 2023?
- source_sentence: >-
As of August 26, 2023, approximately 60 percent of AutoZoners were
employed full-time.
sentences:
- >-
What percentage of AutoZone employees were employed full-time as of
August 26, 2023?
- What type of information can be found under Item 8?
- >-
What type of fees are typically included in the management and franchise
contracts for hotels, and how are they structured?
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: BGE base Financial Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.69
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8228571428571428
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8614285714285714
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8957142857142857
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.69
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2742857142857143
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17228571428571426
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08957142857142857
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.69
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8228571428571428
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8614285714285714
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8957142857142857
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7945358470918553
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.761935941043084
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7657245273513861
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.6857142857142857
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8157142857142857
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8542857142857143
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.89
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6857142857142857
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.27190476190476187
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17085714285714285
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.089
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6857142857142857
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8157142857142857
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8542857142857143
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.89
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7904913359354251
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7583202947845803
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7625604889486977
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.6885714285714286
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8214285714285714
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8471428571428572
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8842857142857142
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6885714285714286
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2738095238095238
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16942857142857143
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08842857142857143
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6885714285714286
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8214285714285714
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8471428571428572
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8842857142857142
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7896289953264028
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7590345804988659
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7635502971962614
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.6585714285714286
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7928571428571428
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8385714285714285
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8714285714285714
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6585714285714286
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.26428571428571423
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16771428571428573
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08714285714285715
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6585714285714286
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7928571428571428
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8385714285714285
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8714285714285714
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.769471630453507
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7362562358276643
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7413221179326462
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.6214285714285714
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7714285714285715
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8071428571428572
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8657142857142858
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6214285714285714
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2571428571428571
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16142857142857142
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08657142857142856
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6214285714285714
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7714285714285715
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8071428571428572
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8657142857142858
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7444608164978749
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7056712018140587
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7097197315690517
name: Cosine Map@100
BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5 on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("ducmai-4203/bge-base-financial-matryoshka")
# Run inference
sentences = [
'As of August 26, 2023, approximately 60 percent of AutoZoners were employed full-time.',
'What percentage of AutoZone employees were employed full-time as of August 26, 2023?',
'What type of information can be found under Item 8?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Datasets:
dim_768
,dim_512
,dim_256
,dim_128
anddim_64
- Evaluated with
InformationRetrievalEvaluator
Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 |
---|---|---|---|---|---|
cosine_accuracy@1 | 0.69 | 0.6857 | 0.6886 | 0.6586 | 0.6214 |
cosine_accuracy@3 | 0.8229 | 0.8157 | 0.8214 | 0.7929 | 0.7714 |
cosine_accuracy@5 | 0.8614 | 0.8543 | 0.8471 | 0.8386 | 0.8071 |
cosine_accuracy@10 | 0.8957 | 0.89 | 0.8843 | 0.8714 | 0.8657 |
cosine_precision@1 | 0.69 | 0.6857 | 0.6886 | 0.6586 | 0.6214 |
cosine_precision@3 | 0.2743 | 0.2719 | 0.2738 | 0.2643 | 0.2571 |
cosine_precision@5 | 0.1723 | 0.1709 | 0.1694 | 0.1677 | 0.1614 |
cosine_precision@10 | 0.0896 | 0.089 | 0.0884 | 0.0871 | 0.0866 |
cosine_recall@1 | 0.69 | 0.6857 | 0.6886 | 0.6586 | 0.6214 |
cosine_recall@3 | 0.8229 | 0.8157 | 0.8214 | 0.7929 | 0.7714 |
cosine_recall@5 | 0.8614 | 0.8543 | 0.8471 | 0.8386 | 0.8071 |
cosine_recall@10 | 0.8957 | 0.89 | 0.8843 | 0.8714 | 0.8657 |
cosine_ndcg@10 | 0.7945 | 0.7905 | 0.7896 | 0.7695 | 0.7445 |
cosine_mrr@10 | 0.7619 | 0.7583 | 0.759 | 0.7363 | 0.7057 |
cosine_map@100 | 0.7657 | 0.7626 | 0.7636 | 0.7413 | 0.7097 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 6,300 training samples
- Columns:
positive
andanchor
- Approximate statistics based on the first 1000 samples:
positive anchor type string string details - min: 2 tokens
- mean: 45.65 tokens
- max: 371 tokens
- min: 2 tokens
- mean: 20.53 tokens
- max: 46 tokens
- Samples:
positive anchor Income before income taxes for the 52-weeks ended December 30, 2023 was $1,200,356.
What was the total income before income taxes for the fiscal year ended December 30, 2023?
The Global Supply Chain program was announced in the second quarter of 2018 and was completed in the fiscal fourth quarter of 2022.
What significant change was made to the global supply chain program in the second quarter of 2018?
The benefits of uncertain tax positions are recorded in our financial statements only after determining a more likely than not probability that the uncertain tax positions will withstand challenge, if any, from taxing authorities.
Under what condition does a company record the benefits of uncertain tax positions in its financial statements?
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 16gradient_accumulation_steps
: 16learning_rate
: 2e-05num_train_epochs
: 4lr_scheduler_type
: cosinewarmup_ratio
: 0.1tf32
: Falseload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Falselocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
---|---|---|---|---|---|---|---|
0.8122 | 10 | 1.6143 | - | - | - | - | - |
0.9746 | 12 | - | 0.7814 | 0.7768 | 0.7692 | 0.7546 | 0.7218 |
1.6244 | 20 | 0.6542 | - | - | - | - | - |
1.9492 | 24 | - | 0.7930 | 0.7882 | 0.7868 | 0.7674 | 0.7410 |
2.4365 | 30 | 0.5233 | - | - | - | - | - |
2.9239 | 36 | - | 0.7941 | 0.7899 | 0.7893 | 0.7699 | 0.7448 |
3.2487 | 40 | 0.4162 | - | - | - | - | - |
3.8985 | 48 | - | 0.7945 | 0.7905 | 0.7896 | 0.7695 | 0.7445 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.4.1
- Transformers: 4.41.2
- PyTorch: 2.5.1+cu121
- Accelerate: 1.2.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}