Built with Axolotl

See axolotl config

axolotl version: 0.4.0

# Llama-2-7b
# base_model: daryl149/llama-2-7b-chat-hf
# model_type: LlamaForCausalLM
# tokenizer_type: LlamaTokenizer
# is_llama_derived_model: true

#Mistral-7b
base_model: mistralai/Mistral-7B-v0.1
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
is_mistral_derived_model: true

# git clone https://github.com/OpenAccess-AI-Collective/axolotl
# cd axolotl

# pip3 install packaging
# pip3 install -e '.[flash-attn,deepspeed]'

# accelerate launch -m axolotl.cli.train ./llama_7b_config.yaml

# accelerate launch -m axolotl.cli.inference ./llama_7b_config.yaml \
#     --lora_model_dir="dohonba/mistral_7b_fingpt"

load_in_8bit: true
load_in_4bit: false
strict: false

datasets:
  - path: dohonba/combi
    type: context_qa.load_v2
  # - path: dohonba/tfns
  #   type: context_qa.load_v2
  # - path: dohonba/auditor_sentiment
  #   type: context_qa.load_v2
  # - path: dohonba/tfns
  #   type: context_qa.load_v2
    
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./lora-out

sequence_len: 512
sample_packing: true
pad_to_sequence_len: true

adapter: lora
lora_model_dir:
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:

wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 1
micro_batch_size: 14
# max_steps: 1000
num_epochs: 2
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
s2_attention:

warmup_steps: 50
evals_per_epoch: 0
eval_table_size:
eval_table_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
  bos_token: "<s>"
  eos_token: "</s>"
  unk_token: "<unk>"

lora-out

This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0917

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 14
  • eval_batch_size: 14
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 50
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss
0.08 1.02 566 0.0986
0.0919 1.98 1110 0.0917

Framework versions

  • PEFT 0.7.1
  • Transformers 4.37.0
  • Pytorch 2.0.1
  • Datasets 2.16.1
  • Tokenizers 0.15.0
Downloads last month
12
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for dohonba/mistral_7b_fingpt

Adapter
(1786)
this model