Lighteval documentation
Use SGLang as backend
Use SGLang as backend
Lighteval allows you to use sglang
as backend allowing great speedups.
To use, simply change the model_args
to reflect the arguments you want to pass to sglang.
lighteval sglang \
"pretrained=HuggingFaceH4/zephyr-7b-beta,dtype=float16" \
"leaderboard|truthfulqa:mc|0|0"
sglang
is able to distribute the model across multiple GPUs using data
parallelism and tensor parallelism.
You can choose the parallelism method by setting in the the model_args
.
For example if you have 4 GPUs you can split it across using tp_size
:
lighteval sglang \
"pretrained=HuggingFaceH4/zephyr-7b-beta,dtype=float16,tp_size=4" \
"leaderboard|truthfulqa:mc|0|0"
Or, if your model fits on a single GPU, you can use dp_size
to speed up the evaluation:
lighteval sglang \
"pretrained=HuggingFaceH4/zephyr-7b-beta,dtype=float16,dp_size=4" \
"leaderboard|truthfulqa:mc|0|0"
Use a config file
For more advanced configurations, you can use a config file for the model.
An example of a config file is shown below and can be found at examples/model_configs/sglang_model_config.yaml
.
lighteval sglang \
"examples/model_configs/sglang_model_config.yaml" \
"leaderboard|truthfulqa:mc|0|0"
model: # Model specific parameters
base_params:
model_args: "pretrained=HuggingFaceTB/SmolLM-1.7B,dtype=float16,chunked_prefill_size=4096,mem_fraction_static=0.9" # Model args that you would pass in the command line
generation: # Generation specific parameters
temperature: 0.3
repetition_penalty: 1.0
frequency_penalty: 0.0
presence_penalty: 0.0
top_k: -1
min_p: 0.0
top_p: 0.9
max_new_tokens: 256
stop_tokens: ["<EOS>", "<PAD>"]
In the case of OOM issues, you might need to reduce the context size of the
model as well as reduce the mem_fraction_static
and chunked_prefill_size
parameter.