Diffusers documentation
ControlNet-XS with Stable Diffusion XL
ControlNet-XS with Stable Diffusion XL
ControlNet-XS was introduced in ControlNet-XS by Denis Zavadski and Carsten Rother. It is based on the observation that the control model in the original ControlNet can be made much smaller and still produce good results.
Like the original ControlNet model, you can provide an additional control image to condition and control Stable Diffusion generation. For example, if you provide a depth map, the ControlNet model generates an image that’ll preserve the spatial information from the depth map. It is a more flexible and accurate way to control the image generation process.
ControlNet-XS generates images with comparable quality to a regular ControlNet, but it is 20-25% faster (see benchmark) and uses ~45% less memory.
Here’s the overview from the project page:
With increasing computing capabilities, current model architectures appear to follow the trend of simply upscaling all components without validating the necessity for doing so. In this project we investigate the size and architectural design of ControlNet [Zhang et al., 2023] for controlling the image generation process with stable diffusion-based models. We show that a new architecture with as little as 1% of the parameters of the base model achieves state-of-the art results, considerably better than ControlNet in terms of FID score. Hence we call it ControlNet-XS. We provide the code for controlling StableDiffusion-XL [Podell et al., 2023] (Model B, 48M Parameters) and StableDiffusion 2.1 [Rombach et al. 2022] (Model B, 14M Parameters), all under openrail license.
This model was contributed by UmerHA. ❤️
🧪 Many of the SDXL ControlNet checkpoints are experimental, and there is a lot of room for improvement. Feel free to open an Issue and leave us feedback on how we can improve!
Make sure to check out the Schedulers guide to learn how to explore the tradeoff between scheduler speed and quality, and see the reuse components across pipelines section to learn how to efficiently load the same components into multiple pipelines.
StableDiffusionXLControlNetXSPipeline
class diffusers.StableDiffusionXLControlNetXSPipeline
< source >( vae: AutoencoderKL text_encoder: CLIPTextModel text_encoder_2: CLIPTextModelWithProjection tokenizer: CLIPTokenizer tokenizer_2: CLIPTokenizer unet: Union controlnet: ControlNetXSAdapter scheduler: KarrasDiffusionSchedulers force_zeros_for_empty_prompt: bool = True add_watermarker: Optional = None feature_extractor: CLIPImageProcessor = None )
Parameters
- vae (AutoencoderKL) — Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
- text_encoder (CLIPTextModel) — Frozen text-encoder (clip-vit-large-patch14).
- text_encoder_2 (CLIPTextModelWithProjection) — Second frozen text-encoder (laion/CLIP-ViT-bigG-14-laion2B-39B-b160k).
- tokenizer (CLIPTokenizer) —
A
CLIPTokenizerto tokenize text. - tokenizer_2 (CLIPTokenizer) —
A
CLIPTokenizerto tokenize text. - unet (UNet2DConditionModel) — A UNet2DConditionModel used to create a UNetControlNetXSModel to denoise the encoded image latents.
- controlnet (
ControlNetXSAdapter) — AControlNetXSAdapterto be used in combination withunetto denoise the encoded image latents. - scheduler (SchedulerMixin) —
A scheduler to be used in combination with
unetto denoise the encoded image latents. Can be one of DDIMScheduler, LMSDiscreteScheduler, or PNDMScheduler. - force_zeros_for_empty_prompt (
bool, optional, defaults to"True") — Whether the negative prompt embeddings should always be set to 0. Also see the config ofstabilityai/stable-diffusion-xl-base-1-0. - add_watermarker (
bool, optional) — Whether to use the invisible_watermark library to watermark output images. If not defined, it defaults toTrueif the package is installed; otherwise no watermarker is used.
Pipeline for text-to-image generation using Stable Diffusion XL with ControlNet-XS guidance.
This model inherits from DiffusionPipeline. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.).
The pipeline also inherits the following loading methods:
- load_textual_inversion() for loading textual inversion embeddings
- loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights() for loading LoRA weights
- loaders.FromSingleFileMixin.from_single_file() for loading
.ckptfiles
__call__
< source >( prompt: Union = None prompt_2: Union = None image: Union = None height: Optional = None width: Optional = None num_inference_steps: int = 50 guidance_scale: float = 5.0 negative_prompt: Union = None negative_prompt_2: Union = None num_images_per_prompt: Optional = 1 eta: float = 0.0 generator: Union = None latents: Optional = None prompt_embeds: Optional = None negative_prompt_embeds: Optional = None pooled_prompt_embeds: Optional = None negative_pooled_prompt_embeds: Optional = None output_type: Optional = 'pil' return_dict: bool = True cross_attention_kwargs: Optional = None controlnet_conditioning_scale: Union = 1.0 control_guidance_start: float = 0.0 control_guidance_end: float = 1.0 original_size: Tuple = None crops_coords_top_left: Tuple = (0, 0) target_size: Tuple = None negative_original_size: Optional = None negative_crops_coords_top_left: Tuple = (0, 0) negative_target_size: Optional = None clip_skip: Optional = None callback_on_step_end: Union = None callback_on_step_end_tensor_inputs: List = ['latents'] ) → ~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput or tuple
Parameters
- prompt (
strorList[str], optional) — The prompt or prompts to guide image generation. If not defined, you need to passprompt_embeds. - prompt_2 (
strorList[str], optional) — The prompt or prompts to be sent totokenizer_2andtext_encoder_2. If not defined,promptis used in both text-encoders. - image (
torch.Tensor,PIL.Image.Image,np.ndarray,List[torch.Tensor],List[PIL.Image.Image],List[np.ndarray], —List[List[torch.Tensor]],List[List[np.ndarray]]orList[List[PIL.Image.Image]]): The ControlNet input condition to provide guidance to theunetfor generation. If the type is specified astorch.Tensor, it is passed to ControlNet as is.PIL.Image.Imagecan also be accepted as an image. The dimensions of the output image defaults toimage’s dimensions. If height and/or width are passed,imageis resized accordingly. If multiple ControlNets are specified ininit, images must be passed as a list such that each element of the list can be correctly batched for input to a single ControlNet. - height (
int, optional, defaults toself.unet.config.sample_size * self.vae_scale_factor) — The height in pixels of the generated image. Anything below 512 pixels won’t work well for stabilityai/stable-diffusion-xl-base-1.0 and checkpoints that are not specifically fine-tuned on low resolutions. - width (
int, optional, defaults toself.unet.config.sample_size * self.vae_scale_factor) — The width in pixels of the generated image. Anything below 512 pixels won’t work well for stabilityai/stable-diffusion-xl-base-1.0 and checkpoints that are not specifically fine-tuned on low resolutions. - num_inference_steps (
int, optional, defaults to 50) — The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. - guidance_scale (
float, optional, defaults to 5.0) — A higher guidance scale value encourages the model to generate images closely linked to the textpromptat the expense of lower image quality. Guidance scale is enabled whenguidance_scale > 1. - negative_prompt (
strorList[str], optional) — The prompt or prompts to guide what to not include in image generation. If not defined, you need to passnegative_prompt_embedsinstead. Ignored when not using guidance (guidance_scale < 1). - negative_prompt_2 (
strorList[str], optional) — The prompt or prompts to guide what to not include in image generation. This is sent totokenizer_2andtext_encoder_2. If not defined,negative_promptis used in both text-encoders. - num_images_per_prompt (
int, optional, defaults to 1) — The number of images to generate per prompt. - eta (
float, optional, defaults to 0.0) — Corresponds to parameter eta (η) from the DDIM paper. Only applies to the DDIMScheduler, and is ignored in other schedulers. - generator (
torch.GeneratororList[torch.Generator], optional) — Atorch.Generatorto make generation deterministic. - latents (
torch.Tensor, optional) — Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor is generated by sampling using the supplied randomgenerator. - prompt_embeds (
torch.Tensor, optional) — Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, text embeddings are generated from thepromptinput argument. - negative_prompt_embeds (
torch.Tensor, optional) — Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided,negative_prompt_embedsare generated from thenegative_promptinput argument. - pooled_prompt_embeds (
torch.Tensor, optional) — Pre-generated pooled text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, pooled text embeddings are generated frompromptinput argument. - negative_pooled_prompt_embeds (
torch.Tensor, optional) — Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, poolednegative_prompt_embedsare generated fromnegative_promptinput argument. - output_type (
str, optional, defaults to"pil") — The output format of the generated image. Choose betweenPIL.Imageornp.array. - return_dict (
bool, optional, defaults toTrue) — Whether or not to return a StableDiffusionPipelineOutput instead of a plain tuple. - cross_attention_kwargs (
dict, optional) — A kwargs dictionary that if specified is passed along to theAttentionProcessoras defined inself.processor. - controlnet_conditioning_scale (
floatorList[float], optional, defaults to 1.0) — The outputs of the ControlNet are multiplied bycontrolnet_conditioning_scalebefore they are added to the residual in the originalunet. - control_guidance_start (
float, optional, defaults to 0.0) — The percentage of total steps at which the ControlNet starts applying. - control_guidance_end (
float, optional, defaults to 1.0) — The percentage of total steps at which the ControlNet stops applying. - original_size (
Tuple[int], optional, defaults to (1024, 1024)) — Iforiginal_sizeis not the same astarget_sizethe image will appear to be down- or upsampled.original_sizedefaults to(width, height)if not specified. Part of SDXL’s micro-conditioning as explained in section 2.2 of https://huggingface.co/papers/2307.01952. - crops_coords_top_left (
Tuple[int], optional, defaults to (0, 0)) —crops_coords_top_leftcan be used to generate an image that appears to be “cropped” from the positioncrops_coords_top_leftdownwards. Favorable, well-centered images are usually achieved by settingcrops_coords_top_leftto (0, 0). Part of SDXL’s micro-conditioning as explained in section 2.2 of https://huggingface.co/papers/2307.01952. - target_size (
Tuple[int], optional, defaults to (1024, 1024)) — For most cases,target_sizeshould be set to the desired height and width of the generated image. If not specified it will default to(width, height). Part of SDXL’s micro-conditioning as explained in section 2.2 of https://huggingface.co/papers/2307.01952. - negative_original_size (
Tuple[int], optional, defaults to (1024, 1024)) — To negatively condition the generation process based on a specific image resolution. Part of SDXL’s micro-conditioning as explained in section 2.2 of https://huggingface.co/papers/2307.01952. For more information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208. - negative_crops_coords_top_left (
Tuple[int], optional, defaults to (0, 0)) — To negatively condition the generation process based on a specific crop coordinates. Part of SDXL’s micro-conditioning as explained in section 2.2 of https://huggingface.co/papers/2307.01952. For more information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208. - negative_target_size (
Tuple[int], optional, defaults to (1024, 1024)) — To negatively condition the generation process based on a target image resolution. It should be as same as thetarget_sizefor most cases. Part of SDXL’s micro-conditioning as explained in section 2.2 of https://huggingface.co/papers/2307.01952. For more information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208. - clip_skip (
int, optional) — Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings. - callback_on_step_end (
Callable,PipelineCallback,MultiPipelineCallbacks, optional) — A function or a subclass ofPipelineCallbackorMultiPipelineCallbacksthat is called at the end of each denoising step during the inference. with the following arguments:callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict).callback_kwargswill include a list of all tensors as specified bycallback_on_step_end_tensor_inputs. - callback_on_step_end_tensor_inputs (
List, optional) — The list of tensor inputs for thecallback_on_step_endfunction. The tensors specified in the list will be passed ascallback_kwargsargument. You will only be able to include variables listed in the._callback_tensor_inputsattribute of your pipeine class.
Returns
~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput or tuple
If return_dict is True, ~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput is
returned, otherwise a tuple is returned containing the output images.
The call function to the pipeline for generation.
Examples:
>>> # !pip install opencv-python transformers accelerate
>>> from diffusers import StableDiffusionXLControlNetXSPipeline, ControlNetXSAdapter, AutoencoderKL
>>> from diffusers.utils import load_image
>>> import numpy as np
>>> import torch
>>> import cv2
>>> from PIL import Image
>>> prompt = "aerial view, a futuristic research complex in a bright foggy jungle, hard lighting"
>>> negative_prompt = "low quality, bad quality, sketches"
>>> # download an image
>>> image = load_image(
... "https://hf.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/hf-logo.png"
... )
>>> # initialize the models and pipeline
>>> controlnet_conditioning_scale = 0.5
>>> vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
>>> controlnet = ControlNetXSAdapter.from_pretrained(
... "UmerHA/Testing-ConrolNetXS-SDXL-canny", torch_dtype=torch.float16
... )
>>> pipe = StableDiffusionXLControlNetXSPipeline.from_pretrained(
... "stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet, torch_dtype=torch.float16
... )
>>> pipe.enable_model_cpu_offload()
>>> # get canny image
>>> image = np.array(image)
>>> image = cv2.Canny(image, 100, 200)
>>> image = image[:, :, None]
>>> image = np.concatenate([image, image, image], axis=2)
>>> canny_image = Image.fromarray(image)
>>> # generate image
>>> image = pipe(
... prompt, controlnet_conditioning_scale=controlnet_conditioning_scale, image=canny_image
... ).images[0]encode_prompt
< source >( prompt: str prompt_2: Optional = None device: Optional = None num_images_per_prompt: int = 1 do_classifier_free_guidance: bool = True negative_prompt: Optional = None negative_prompt_2: Optional = None prompt_embeds: Optional = None negative_prompt_embeds: Optional = None pooled_prompt_embeds: Optional = None negative_pooled_prompt_embeds: Optional = None lora_scale: Optional = None clip_skip: Optional = None )
Parameters
- prompt (
strorList[str], optional) — prompt to be encoded - prompt_2 (
strorList[str], optional) — The prompt or prompts to be sent to thetokenizer_2andtext_encoder_2. If not defined,promptis used in both text-encoders device — (torch.device): torch device - num_images_per_prompt (
int) — number of images that should be generated per prompt - do_classifier_free_guidance (
bool) — whether to use classifier free guidance or not - negative_prompt (
strorList[str], optional) — The prompt or prompts not to guide the image generation. If not defined, one has to passnegative_prompt_embedsinstead. Ignored when not using guidance (i.e., ignored ifguidance_scaleis less than1). - negative_prompt_2 (
strorList[str], optional) — The prompt or prompts not to guide the image generation to be sent totokenizer_2andtext_encoder_2. If not defined,negative_promptis used in both text-encoders - prompt_embeds (
torch.Tensor, optional) — Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, text embeddings will be generated frompromptinput argument. - negative_prompt_embeds (
torch.Tensor, optional) — Pre-generated negative text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, negative_prompt_embeds will be generated fromnegative_promptinput argument. - pooled_prompt_embeds (
torch.Tensor, optional) — Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, pooled text embeddings will be generated frompromptinput argument. - negative_pooled_prompt_embeds (
torch.Tensor, optional) — Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, pooled negative_prompt_embeds will be generated fromnegative_promptinput argument. - lora_scale (
float, optional) — A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. - clip_skip (
int, optional) — Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings.
Encodes the prompt into text encoder hidden states.
StableDiffusionPipelineOutput
class diffusers.pipelines.stable_diffusion.StableDiffusionPipelineOutput
< source >( images: Union nsfw_content_detected: Optional )
Parameters
- images (
List[PIL.Image.Image]ornp.ndarray) — List of denoised PIL images of lengthbatch_sizeor NumPy array of shape(batch_size, height, width, num_channels). - nsfw_content_detected (
List[bool]) — List indicating whether the corresponding generated image contains “not-safe-for-work” (nsfw) content orNoneif safety checking could not be performed.
Output class for Stable Diffusion pipelines.