Diffusers documentation
ComponentsManager
ComponentsManager
The ComponentsManager is a model registry and management system for Modular Diffusers. It adds and tracks models, stores useful metadata (model size, device placement, adapters), prevents duplicate model instances, and supports offloading.
This guide will show you how to use ComponentsManager to manage components and device memory.
Add a component
The ComponentsManager should be created alongside a ModularPipeline in either from_pretrained() or init_pipeline().
The collection
parameter is optional but makes it easier to organize and manage components.
from diffusers import ModularPipeline, ComponentsManager
comp = ComponentsManager()
pipe = ModularPipeline.from_pretrained("YiYiXu/modular-demo-auto", components_manager=comp, collection="test1")
Components are only loaded and registered when using load_components() or load_default_components(). The example below uses load_default_components() to create a second pipeline that reuses all the components from the first one, and assigns it to a different collection
pipe.load_default_components()
pipe2 = ModularPipeline.from_pretrained("YiYiXu/modular-demo-auto", components_manager=comp, collection="test2")
Use the null_component_names
property to identify any components that need to be loaded, retrieve them with get_components_by_names(), and then call update_components() to add the missing components.
pipe2.null_component_names
['text_encoder', 'text_encoder_2', 'tokenizer', 'tokenizer_2', 'image_encoder', 'unet', 'vae', 'scheduler', 'controlnet']
comp_dict = comp.get_components_by_names(names=pipe2.null_component_names)
pipe2.update_components(**comp_dict)
To add individual components, use the add() method. This registers a component with a unique id.
from diffusers import AutoModel
text_encoder = AutoModel.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", subfolder="text_encoder")
component_id = comp.add("text_encoder", text_encoder)
comp
Use remove() to remove a component using their id.
comp.remove("text_encoder_139917733042864")
Retrieve a component
The ComponentsManager provides several methods to retrieve registered components.
get_one
The get_one() method returns a single component and supports pattern matching for the name
parameter. If multiple components match, get_one() returns an error.
Pattern | Example | Description |
---|---|---|
exact | comp.get_one(name="unet") | exact name match |
wildcard | comp.get_one(name="unet*") | names starting with “unet” |
exclusion | comp.get_one(name="!unet") | exclude components named “unet” |
or | comp.get_one(name="unet|vae") | name is “unet” or “vae” |
get_one() also filters components by the collection
argument or load_id
argument.
comp.get_one(name="unet", collection="sdxl")
get_components_by_names
The get_components_by_names() method accepts a list of names and returns a dictionary mapping names to components. This is especially useful with ModularPipeline since they provide lists of required component names and the returned dictionary can be passed directly to update_components().
component_dict = comp.get_components_by_names(names=["text_encoder", "unet", "vae"])
{"text_encoder": component1, "unet": component2, "vae": component3}
Duplicate detection
It is recommended to load model components with ComponentSpec to assign components with a unique id that encodes their loading parameters. This allows ComponentsManager to automatically detect and prevent duplicate model instances even when different objects represent the same underlying checkpoint.
from diffusers import ComponentSpec, ComponentsManager
from transformers import CLIPTextModel
comp = ComponentsManager()
# Create ComponentSpec for the first text encoder
spec = ComponentSpec(name="text_encoder", repo="stabilityai/stable-diffusion-xl-base-1.0", subfolder="text_encoder", type_hint=AutoModel)
# Create ComponentSpec for a duplicate text encoder (it is same checkpoint, from the same repo/subfolder)
spec_duplicated = ComponentSpec(name="text_encoder_duplicated", repo="stabilityai/stable-diffusion-xl-base-1.0", subfolder="text_encoder", type_hint=CLIPTextModel)
# Load and add both components - the manager will detect they're the same model
comp.add("text_encoder", spec.load())
comp.add("text_encoder_duplicated", spec_duplicated.load())
This returns a warning with instructions for removing the duplicate.
ComponentsManager: adding component 'text_encoder_duplicated_139917580682672', but it has duplicate load_id 'stabilityai/stable-diffusion-xl-base-1.0|text_encoder|null|null' with existing components: text_encoder_139918506246832. To remove a duplicate, call `components_manager.remove('<component_id>')`.
'text_encoder_duplicated_139917580682672'
You could also add a component without using ComponentSpec and duplicate detection still works in most cases even if you’re adding the same component under a different name.
However, ComponentManager
can’t detect duplicates when you load the same component into different objects. In this case, you should load a model with ComponentSpec.
text_encoder_2 = AutoModel.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", subfolder="text_encoder")
comp.add("text_encoder", text_encoder_2)
'text_encoder_139917732983664'
Collections
Collections are labels assigned to components for better organization and management. Add a component to a collection with the collection
argument in add().
Only one component per name is allowed in each collection. Adding a second component with the same name automatically removes the first component.
from diffusers import ComponentSpec, ComponentsManager
comp = ComponentsManager()
# Create ComponentSpec for the first UNet
spec = ComponentSpec(name="unet", repo="stabilityai/stable-diffusion-xl-base-1.0", subfolder="unet", type_hint=AutoModel)
# Create ComponentSpec for a different UNet
spec2 = ComponentSpec(name="unet", repo="RunDiffusion/Juggernaut-XL-v9", subfolder="unet", type_hint=AutoModel, variant="fp16")
# Add both UNets to the same collection - the second one will replace the first
comp.add("unet", spec.load(), collection="sdxl")
comp.add("unet", spec2.load(), collection="sdxl")
This makes it convenient to work with node-based systems because you can:
- Mark all models as loaded from one node with the
collection
label. - Automatically replace models when new checkpoints are loaded under the same name.
- Batch delete all models in a collection when a node is removed.
Offloading
The enable_auto_cpu_offload() method is a global offloading strategy that works across all models regardless of which pipeline is using them. Once enabled, you don’t need to worry about device placement if you add or remove components.
comp.enable_auto_cpu_offload(device="cuda")
All models begin on the CPU and ComponentsManager moves them to the appropriate device right before they’re needed, and moves other models back to the CPU when GPU memory is low.
You can set your own rules for which models to offload first.
< > Update on GitHub