DNA-R1 / README.md
likejazz's picture
Update README.md
f434205 verified
|
raw
history blame
9.38 kB
---
language:
- en
- ko
license: cc-by-nc-4.0
tags:
- dnotitia
- nlp
- llm
- slm
- conversation
- chat
- reasoning
- r1
base_model:
- microsoft/phi-4
library_name: transformers
pipeline_tag: text-generation
---
# DNA-R1
<p align="center">
<img src="assets/dna-r1-logo.png" width="400" style="margin: 40px auto;">
</p>
We introduce **DNA-R1**, a specialized reasoning model optimized for Korean language based on Microsoft's Phi-4. By applying large-scale reinforcement learning (RL) using the same methodology as DeepSeek-R1, we have significantly enhanced the model's Korean reasoning capabilities. This model demonstrates deep understanding of Korean text and exhibits exceptional reasoning abilities across mathematics, coding, and general reasoning tasks.
<p align="center">
<img src="assets/dna-r1-pipeline.png" width="100%" style="margin: 40px auto;">
</p>
## Training Methodology
Our comprehensive training pipeline consists of three strategic stages:
- **Stage 1:** Initial SFT with a large Korean non-reasoning dataset (760k examples) reused from our [DNA 1.0 8B Instruct](https://huggingface.co/dnotitia/Llama-DNA-1.0-8B-Instruct) training pipeline
- **Stage 2:** Strategic integration of Korean reasoning patterns from DeepSeek R1 using a specialized Korean reasoning dataset (300k examples)
- **Stage 3:** Advanced reinforcement learning with GRPO using a combined Korean/English reasoning dataset, with format, accuracy, and language consistency as rewards
DNA-R1 has learned reasoning patterns specifically tailored for Korean language, and demonstrates capabilities such as self-verification, reflection, and generation of long chains-of-thought (CoT). This represents a significant milestone for the AI research community in the Korean language environment.
## Model Specifications
- **Developed by:** Dnotitia Inc.
- **Supported Languages:** Korean, English
- **Model Release Date:** Mar 4, 2025
- **Number of Parameters:** 14B
- **License:** CC BY-NC 4.0
<div style="padding: 2px 8px; background-color: hsl(240, 100%, 50%, 0.1); border-radius: 5px">
<p><strong>NOTICE (Korean):</strong></p>
<p>๋ณธ ๋ชจ๋ธ์€ ์ƒ์—…์  ๋ชฉ์ ์œผ๋กœ ํ™œ์šฉํ•˜์‹ค ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ƒ์—…์  ์ด์šฉ์„ ์›ํ•˜์‹œ๋Š” ๊ฒฝ์šฐ, ๋””๋…ธํ‹ฐ์‹œ์•„ ํ™ˆํŽ˜์ด์ง€์˜ <a href="https://www.dnotitia.com/contact/post-form">Contact us</a>๋ฅผ ํ†ตํ•ด ๋ฌธ์˜ํ•ด ์ฃผ์‹œ๊ธฐ ๋ฐ”๋ž๋‹ˆ๋‹ค. ๊ฐ„๋‹จํ•œ ํ˜‘์˜ ์ ˆ์ฐจ๋ฅผ ๊ฑฐ์ณ ์ƒ์—…์  ํ™œ์šฉ์„ ์Šน์ธํ•ด ๋“œ๋ฆฌ๋„๋ก ํ•˜๊ฒ ์Šต๋‹ˆ๋‹ค.</p>
</div>
## Technical Details
### Multi-Stage Training Pipeline
We implemented a sophisticated training approach to enhance Phi-4's Korean reasoning capabilities:
1. **Initial Foundation (Stage 1):** Supervised Fine-Tuning using our extensive Korean non-reasoning dataset from the established [DNA 1.0 8B Instruct](https://huggingface.co/dnotitia/Llama-DNA-1.0-8B-Instruct) training pipeline
2. **Reasoning Integration (Stage 2):** Specialized adaptation of DeepSeek R1's reasoning patterns with Korean-specific optimization through a meticulously curated dataset
3. **Advanced Refinement (Stage 3):** Reinforcement learning optimization using GRPO to perfect reasoning in both Korean and English, with comprehensive reward signals for format structure, factual accuracy, and language consistency
This methodical approach enables DNA-R1 to develop sophisticated chain-of-thought (CoT) reasoning for complex problem solving, resulting in a model finely calibrated for Korean language reasoning while maintaining robust general capabilities.
### Performance Highlights
Our Korean-specific multi-stage training pipeline significantly enhances the Phi-4 base model's understanding of Korean context, reasoning depth, and response capabilities. The model excels at:
- Generating nuanced Korean chains-of-thought (CoT)
- Performing rigorous self-verification
- Solving multi-step complex problems
- Maintaining cultural and linguistic context in reasoning
- Distinguishing between deep thinking and concise answers using the `<think>` and `<answer>` tags
## Evaluation Results
Below, we present our evaluation results for the DNA-R1 model across math, coding, science, Korean, and general-performance benchmarks.
Despite being only 14B in size, the DNA-R1 model demonstrates superior performance compared to many larger models across various benchmarks.
<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Task</th>
<th>DNA-R1 (14B)</th>
<th>DeepSeek-R1-Distill-Qwen-14B</th>
<th>DeepSeek-R1-Distill-Qwen-32B</th>
<th>EXAONE-3.5-32B-Instruct</th>
<th>QwQ-32B-Preview</th>
<th>gpt-4o-0513</th>
<th>o1-mini</th>
<th>o1-preview</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSM8K</td>
<td rowspan="4">Math</td>
<td><b>92.49</b></td>
<td>88.63</td>
<td>82.64</td>
<td><u>91.9</u></td>
<td>82.41</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Math500</td>
<td><u>89.4</u></td>
<td>88.2</td>
<td>87.4</td>
<td>75.8</td>
<td><b>92.2</b></td>
<td>75.8</td>
<td>85.6</td>
<td>81.4</td>
</tr>
<tr>
<td>AIME2024</td>
<td>53.3</td>
<td><u>69.7</u></td>
<td><b>72.6</b></td>
<td>6.67</td>
<td>50.0</td>
<td>8.6</td>
<td>64.0</td>
<td>40</td>
</tr>
<tr>
<td>OlympiadBench (Math, EN)</td>
<td><u>59.3</u></td>
<td>56.82</td>
<td>55.34</td>
<td>38.58</td>
<td><b>62.17</b></td>
<td>-</td>
<td>-</td>
<td>59.2</td>
</tr>
<tr>
<td>GPQA-Diamond</td>
<td>Science/Reasoning</td>
<td><u>61.11</u></td>
<td>59.1</td>
<td>58.08</td>
<td>33.33</td>
<td>52.5</td>
<td>46.5</td>
<td>60</td>
<td><b>75.2</b></td>
</tr>
<tr>
<td>LiveCodeBench</td>
<td>Coding</td>
<td>50.58</td>
<td>59.88</td>
<td><u>61.65</u></td>
<td>19.8</td>
<td>59.12</td>
<td>50.48</td>
<td><b>72.75</b></td>
<td>59.14</td>
</tr>
<tr>
<td>KMMLU-direct</td>
<td rowspan="3">Korean</td>
<td><u>59.9</u></td>
<td>50.5</td>
<td>58.62</td>
<td>-</td>
<td><b>62.96</b></td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>KMMLU-hard</td>
<td><u>36.65</u></td>
<td>25.34</td>
<td>33.67</td>
<td>-</td>
<td><b>37.98</b></td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>KoBEST</td>
<td><u>83.05</u></td>
<td>74.32</td>
<td>78.53</td>
<td>-</td>
<td><b>85.93</b></td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MMLU-Pro</td>
<td rowspan="3">General</td>
<td><u>57.64</u></td>
<td>50.55</td>
<td><b>59.58</b></td>
<td>-</td>
<td>46.82</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
- The *highest* *scores* are in **bold** form, and the *second*\-*highest* *scores* are <u>underlined</u>.
- All benchmarks are evaluated with [lm-eval](https://github.com/EleutherAI/lm-evaluation-harness) and [skythought-eval](https://github.com/NovaSky-AI/SkyThought/tree/main/skythought/evals).
## Quickstart
```python
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
tokenizer = AutoTokenizer.from_pretrained('dnotitia/DNA-R1')
model = AutoModelForCausalLM.from_pretrained('dnotitia/DNA-R1', device_map='auto')
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
conversation = [
{"role": "user", "content": """
์–ด๋ ค์„œ๋ถ€ํ„ฐ ์šฐ๋ฆฌ ์ง‘์€ ๊ฐ€๋‚œํ–ˆ์—ˆ๊ณ 
๋‚จ๋“ค ๋‹คํ•˜๋Š” ์™ธ์‹ ๋ช‡ ๋ฒˆ ํ•œ ์ ์ด ์—†์—ˆ๊ณ 
์ผํ„ฐ์— ๋‚˜๊ฐ€์‹  ์–ด๋จธ๋‹ˆ ์ง‘์— ์—†์œผ๋ฉด
์–ธ์ œ๋‚˜ ํ˜ผ์ž์„œ ๋“์—ฌ ๋จน์—ˆ๋˜ ๋ผ๋ฉด
๊ทธ๋Ÿฌ๋‹ค ๋ผ๋ฉด์ด ๋„ˆ๋ฌด ์ง€๊ฒจ์›Œ์„œ
๋ง›์žˆ๋Š” ๊ฒƒ ์ข€ ๋จน์ž๊ณ  ๋Œ€๋“ค์—ˆ์—ˆ์–ด
๊ทธ๋Ÿฌ์ž ์–ด๋จธ๋‹˜์ด ๋งˆ์ง€๋ชปํ•ด ๊บผ๋‚ด์‹ 
์ˆจ๊ฒจ๋‘์‹  ๋น„์ƒ๊ธˆ์œผ๋กœ ์‹œ์ผœ์ฃผ์‹ 
์งœ์žฅ๋ฉด ํ•˜๋‚˜์— ๋„ˆ๋ฌด๋‚˜ ํ–‰๋ณตํ–ˆ์—ˆ์–ด
ํ•˜์ง€๋งŒ ์–ด๋จธ๋‹˜์€ ์™ ์ง€ ๋“œ์‹œ์งˆ ์•Š์•˜์–ด
์–ด๋จธ๋‹˜์€ ์งœ์žฅ๋ฉด์ด ์‹ซ๋‹ค๊ณ  ํ•˜์…จ์–ด
์–ด๋จธ๋‹˜์€ ์งœ์žฅ๋ฉด์ด ์‹ซ๋‹ค๊ณ  ํ•˜์…จ์–ด
์•ผ์ด์•ผ~์•ผ ๊ทธ๋ ‡๊ฒŒ ์‚ด์•„๊ฐ€๊ณ 
๊ทธ๋ ‡๊ฒŒ ํ›„ํšŒํ•˜๊ณ  ๋ˆˆ๋ฌผ๋„ ํ˜๋ฆฌ๊ณ 
์•ผ์ด์•ผ~์•ผ ๊ทธ๋ ‡๊ฒŒ ์‚ด์•„๊ฐ€๊ณ 
๋„ˆ๋ฌด๋‚˜ ์•„ํ”„๊ณ  ํ•˜์ง€๋งŒ ๋‹ค์‹œ ์›ƒ๊ณ 
---
์นœ๊ตฌ๊ฐ€ ์“ด ์‹œ์ธ๋ฐ, ์—ฌ๊ธฐ์„œ ์นœ๊ตฌ์˜ ์–ด๋จธ๋‹ˆ๊ฐ€ ์งœ์žฅ๋ฉด์ด ์‹ซ๋‹ค๊ณ  ํ•˜์‹  ์ด์œ ๋Š”?"""},
]
inputs = tokenizer.apply_chat_template(conversation,
add_generation_prompt=True,
return_dict=True,
return_tensors="pt").to(model.device)
_ = model.generate(**inputs, streamer=streamer)
```
## License
This model is released under CC BY-NC 4.0 license. If you have any questions or commercial usage inquiries, please [Contact us](https://www.dnotitia.com/contact/post-form).
## Citation
If you use or discuss this model in your academic research, please cite the project to help spread awareness:
```
@misc{dnar12025,
title={DNA R1},
author={Jungyup Lee and Jemin Kim and Sang Park and SeungJae Lee},
year={2025},
publisher={HuggingFace},
url={https://huggingface.co/dnotitia/DNA-R1}
}
```