metadata
language: en
license: mit
base_model: google-bert/bert-large-uncased
tags:
- token-classification
- bert-large-uncased
datasets:
- disham993/ElectricalNER
metrics:
- epoch: 1
- eval_precision: 0.9082058414464534
- eval_recall: 0.928949656208014
- eval_f1: 0.9184606368431334
- eval_accuracy: 0.9632122370936902
- eval_runtime: 2.7169
- eval_samples_per_second: 555.414
- eval_steps_per_second: 8.834
disham993/electrical-ner-bert-large
Model description
This model is fine-tuned from google-bert/bert-large-uncased for token-classification tasks.
Training Data
The model was trained on the disham993/ElectricalNER dataset.
Model Details
- Base Model: google-bert/bert-large-uncased
- Task: token-classification
- Language: en
- Dataset: disham993/ElectricalNER
Training procedure
Training hyperparameters
[Please add your training hyperparameters here]
Evaluation results
Metrics\n- epoch: 1.0\n- eval_precision: 0.9082058414464534\n- eval_recall: 0.928949656208014\n- eval_f1: 0.9184606368431334\n- eval_accuracy: 0.9632122370936902\n- eval_runtime: 2.7169\n- eval_samples_per_second: 555.414\n- eval_steps_per_second: 8.834
Usage
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("disham993/electrical-ner-bert-large")
model = AutoModel.from_pretrained("disham993/electrical-ner-bert-large")
Limitations and bias
[Add any known limitations or biases of the model]
Training Infrastructure
[Add details about training infrastructure used]
Last update
2024-12-30