dinho1597 commited on
Commit
f6eea6d
·
verified ·
1 Parent(s): 17242d6

Subiendo modelo inicial

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,496 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:6552
8
+ - loss:MultipleNegativesRankingLoss
9
+ base_model: BAAI/bge-small-en-v1.5
10
+ widget:
11
+ - source_sentence: What does the RAT (Radio Access Technology) Agnostic Control Functions
12
+ (RACFs) interface with?
13
+ sentences:
14
+ - TLS/SSL is an encryption protocol that creates a secure data channel on an insecure
15
+ network to make client/server applications secure.
16
+ - TLS/SSL ensures that data transferred between client and server applications cannot
17
+ be misused or read, and detects if data have been amended during transmission.
18
+ - The RAT Agnostic Control Functions (RACFs) interface with the Flow Controller
19
+ and RAT Specific Control Functions (RSCFs).
20
+ - source_sentence: What is an ultra-dense network (UDN)?
21
+ sentences:
22
+ - The Markov decision process approach models the delay-aware cross-layer optimization
23
+ problem as an infinite horizon average cost MDP.
24
+ - DNS (Domain Name System) is a system that translates human-friendly domain names
25
+ into IP addresses used by computers to locate servers on the internet.
26
+ - The document defines an ultra-dense network (UDN) as a network with the spatial
27
+ density of cells much larger than that of active users.
28
+ - source_sentence: What is the main benefit of storage coding for video files?
29
+ sentences:
30
+ - In the context of deep learning, GPU stands for Graphics Processing Unit, which
31
+ enables parallel computing for faster inference.
32
+ - Storage coding allows the recovery of original video files even in the case of
33
+ multiple failures.
34
+ - For DMG STAs, the TXOP holder may transmit a frame using a modulation class other
35
+ than the DMG Control modulation class at the start of the TXOP if the time elapsed
36
+ since the last frame received from the TXOP responder is shorter than the Heartbeat
37
+ Elapsed Time value computed using the Heartbeat Elapsed Indication field within
38
+ the TXOP responder's DMG Capabilities element.
39
+ - source_sentence: What is the primary parameter used to measure the severity of narrowband
40
+ fading in AG (air to ground) propagation channels?
41
+ sentences:
42
+ - The main difference between the Wyner's wiretap coding scheme and the coding scheme
43
+ used in FB-CSs is that Wyner's scheme uses codeword rate and rate redundancy,
44
+ while the FB-CSs scheme uses coding rate directly.
45
+ - The RA field is the individual address of the STA that is the immediate intended
46
+ receiver of the frame.
47
+ - The severity of narrowband fading in AG propagation channels is measured using
48
+ the Ricean K-factor, which is the ratio of dominant channel component power to
49
+ the power in the sum of all other received components.
50
+ - source_sentence: What is one way to enhance the robustness of terahertz in real-time
51
+ communication?
52
+ sentences:
53
+ - Handover refers to the process of changing the serving cell of a UE in RRC_CONNECTED.
54
+ - Enhancing beam tracking, resource allocation, and user association can improve
55
+ the robustness of terahertz in real-time communication.
56
+ - NG-PON has a one-way latency of 2.5 μs, which is the lowest among all the fronthaul
57
+ technologies.
58
+ datasets:
59
+ - dinho1597/Telecom-QA-MultipleChoice
60
+ pipeline_tag: sentence-similarity
61
+ library_name: sentence-transformers
62
+ metrics:
63
+ - cosine_accuracy@1
64
+ - cosine_accuracy@3
65
+ - cosine_accuracy@5
66
+ - cosine_accuracy@10
67
+ - cosine_precision@1
68
+ - cosine_recall@1
69
+ - cosine_ndcg@10
70
+ - cosine_mrr@10
71
+ - cosine_map@100
72
+ model-index:
73
+ - name: SentenceTransformer based on BAAI/bge-small-en-v1.5
74
+ results:
75
+ - task:
76
+ type: information-retrieval
77
+ name: Information Retrieval
78
+ dataset:
79
+ name: telecom ir eval
80
+ type: telecom-ir-eval
81
+ metrics:
82
+ - type: cosine_accuracy@1
83
+ value: 0.9482044198895028
84
+ name: Cosine Accuracy@1
85
+ - type: cosine_accuracy@3
86
+ value: 0.9910220994475138
87
+ name: Cosine Accuracy@3
88
+ - type: cosine_accuracy@5
89
+ value: 0.9924033149171271
90
+ name: Cosine Accuracy@5
91
+ - type: cosine_accuracy@10
92
+ value: 0.9951657458563536
93
+ name: Cosine Accuracy@10
94
+ - type: cosine_precision@1
95
+ value: 0.9482044198895028
96
+ name: Cosine Precision@1
97
+ - type: cosine_recall@1
98
+ value: 0.9482044198895028
99
+ name: Cosine Recall@1
100
+ - type: cosine_ndcg@10
101
+ value: 0.9753237736211358
102
+ name: Cosine Ndcg@10
103
+ - type: cosine_mrr@10
104
+ value: 0.9685674822415152
105
+ name: Cosine Mrr@10
106
+ - type: cosine_map@100
107
+ value: 0.9688408433724855
108
+ name: Cosine Map@100
109
+ ---
110
+
111
+ # SentenceTransformer based on BAAI/bge-small-en-v1.5
112
+
113
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) on the [telecom-qa-multiple_choice](https://huggingface.co/datasets/dinho1597/Telecom-QA-MultipleChoice) dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
114
+
115
+ ## Model Details
116
+
117
+ ### Model Description
118
+ - **Model Type:** Sentence Transformer
119
+ - **Base model:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) <!-- at revision 5c38ec7c405ec4b44b94cc5a9bb96e735b38267a -->
120
+ - **Maximum Sequence Length:** 512 tokens
121
+ - **Output Dimensionality:** 384 dimensions
122
+ - **Similarity Function:** Cosine Similarity
123
+ - **Training Dataset:**
124
+ - [telecom-qa-multiple_choice](https://huggingface.co/datasets/dinho1597/Telecom-QA-MultipleChoice)
125
+ <!-- - **Language:** Unknown -->
126
+ <!-- - **License:** Unknown -->
127
+
128
+ ### Model Sources
129
+
130
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
131
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
132
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
133
+
134
+ ### Full Model Architecture
135
+
136
+ ```
137
+ SentenceTransformer(
138
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
139
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
140
+ (2): Normalize()
141
+ )
142
+ ```
143
+
144
+ ## Usage
145
+
146
+ ### Direct Usage (Sentence Transformers)
147
+
148
+ First install the Sentence Transformers library:
149
+
150
+ ```bash
151
+ pip install -U sentence-transformers
152
+ ```
153
+
154
+ Then you can load this model and run inference.
155
+ ```python
156
+ from sentence_transformers import SentenceTransformer
157
+
158
+ # Download from the 🤗 Hub
159
+ model = SentenceTransformer("sentence_transformers_model_id")
160
+ # Run inference
161
+ sentences = [
162
+ 'What is one way to enhance the robustness of terahertz in real-time communication?',
163
+ 'Enhancing beam tracking, resource allocation, and user association can improve the robustness of terahertz in real-time communication.',
164
+ 'Handover refers to the process of changing the serving cell of a UE in RRC_CONNECTED.',
165
+ ]
166
+ embeddings = model.encode(sentences)
167
+ print(embeddings.shape)
168
+ # [3, 384]
169
+
170
+ # Get the similarity scores for the embeddings
171
+ similarities = model.similarity(embeddings, embeddings)
172
+ print(similarities.shape)
173
+ # [3, 3]
174
+ ```
175
+
176
+ <!--
177
+ ### Direct Usage (Transformers)
178
+
179
+ <details><summary>Click to see the direct usage in Transformers</summary>
180
+
181
+ </details>
182
+ -->
183
+
184
+ <!--
185
+ ### Downstream Usage (Sentence Transformers)
186
+
187
+ You can finetune this model on your own dataset.
188
+
189
+ <details><summary>Click to expand</summary>
190
+
191
+ </details>
192
+ -->
193
+
194
+ <!--
195
+ ### Out-of-Scope Use
196
+
197
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
198
+ -->
199
+
200
+ ## Evaluation
201
+
202
+ ### Metrics
203
+
204
+ #### Information Retrieval
205
+
206
+ * Dataset: `telecom-ir-eval`
207
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
208
+
209
+ | Metric | Value |
210
+ |:-------------------|:-----------|
211
+ | cosine_accuracy@1 | 0.9482 |
212
+ | cosine_accuracy@3 | 0.991 |
213
+ | cosine_accuracy@5 | 0.9924 |
214
+ | cosine_accuracy@10 | 0.9952 |
215
+ | cosine_precision@1 | 0.9482 |
216
+ | cosine_recall@1 | 0.9482 |
217
+ | **cosine_ndcg@10** | **0.9753** |
218
+ | cosine_mrr@10 | 0.9686 |
219
+ | cosine_map@100 | 0.9688 |
220
+
221
+ <!--
222
+ ## Bias, Risks and Limitations
223
+
224
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
225
+ -->
226
+
227
+ <!--
228
+ ### Recommendations
229
+
230
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
231
+ -->
232
+
233
+ ## Training Details
234
+
235
+ ### Training Dataset
236
+
237
+ #### telecom-qa-multiple_choice
238
+
239
+ * Dataset: [telecom-qa-multiple_choice](https://huggingface.co/datasets/dinho1597/Telecom-QA-MultipleChoice) at [73aebbb](https://huggingface.co/datasets/dinho1597/Telecom-QA-MultipleChoice/tree/73aebbb16651212e4b1947ac0d64fc80a6bc9398)
240
+ * Size: 6,552 training samples
241
+ * Columns: <code>anchor</code> and <code>positive</code>
242
+ * Approximate statistics based on the first 1000 samples:
243
+ | | anchor | positive |
244
+ |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
245
+ | type | string | string |
246
+ | details | <ul><li>min: 4 tokens</li><li>mean: 18.54 tokens</li><li>max: 48 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 29.33 tokens</li><li>max: 100 tokens</li></ul> |
247
+ * Samples:
248
+ | anchor | positive |
249
+ |:-----------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
250
+ | <code>What are the two mechanisms in a CDMA (Code Division Multiple Access) system that reduce the chances of significant interference?</code> | <code>In a CDMA system, power control and soft handoff mechanisms are used to reduce the chances of significant interference. Power control ensures that there is no significant intra-cell interference, and soft handoff selects the base station with the best reception to control the user's power, reducing the chance of out-of-cell interference.</code> |
251
+ | <code>What type of traffic is LPWAN (Low-Power Wide Area Network) suitable for?</code> | <code>LPWANs are suitable for sporadic and intermittent transmissions of very small packets.</code> |
252
+ | <code>What is the definition of an Authenticator in IEEE Std 802.11-2020?</code> | <code>An Authenticator is an entity at one end of a point-to-point LAN segment that facilitates authentication of the entity attached to the other end of that link.</code> |
253
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
254
+ ```json
255
+ {
256
+ "scale": 20.0,
257
+ "similarity_fct": "cos_sim"
258
+ }
259
+ ```
260
+
261
+ ### Evaluation Dataset
262
+
263
+ #### telecom-qa-multiple_choice
264
+
265
+ * Dataset: [telecom-qa-multiple_choice](https://huggingface.co/datasets/dinho1597/Telecom-QA-MultipleChoice) at [73aebbb](https://huggingface.co/datasets/dinho1597/Telecom-QA-MultipleChoice/tree/73aebbb16651212e4b1947ac0d64fc80a6bc9398)
266
+ * Size: 6,552 evaluation samples
267
+ * Columns: <code>anchor</code> and <code>positive</code>
268
+ * Approximate statistics based on the first 1000 samples:
269
+ | | anchor | positive |
270
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
271
+ | type | string | string |
272
+ | details | <ul><li>min: 4 tokens</li><li>mean: 18.83 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 28.7 tokens</li><li>max: 99 tokens</li></ul> |
273
+ * Samples:
274
+ | anchor | positive |
275
+ |:----------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
276
+ | <code>How is the continuous-time impulse response of the end-to-end system computed?</code> | <code>The continuous-time impulse response of the end-to-end system is computed as the convolution of the impulse responses of the RIS paths and the propagation channels.</code> |
277
+ | <code>What is lattice staggering in a multicarrier scheme?</code> | <code>Lattice staggering is a methodology that generates inherent orthogonality between the points in the lattice for the real domain by using different prototype filters for the real and imaginary parts of the scheme.</code> |
278
+ | <code>What are the benefits of using Mobile Edge Computing (MEC) for computation-intensive applications?</code> | <code>MEC enables applications to be split into small tasks with some of the tasks performed at the local or regional clouds, reducing delay and backhaul usage.</code> |
279
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
280
+ ```json
281
+ {
282
+ "scale": 20.0,
283
+ "similarity_fct": "cos_sim"
284
+ }
285
+ ```
286
+
287
+ ### Training Hyperparameters
288
+ #### Non-Default Hyperparameters
289
+
290
+ - `eval_strategy`: steps
291
+ - `per_device_train_batch_size`: 128
292
+ - `per_device_eval_batch_size`: 128
293
+ - `weight_decay`: 0.01
294
+ - `num_train_epochs`: 5
295
+ - `lr_scheduler_type`: cosine_with_restarts
296
+ - `warmup_ratio`: 0.1
297
+ - `fp16`: True
298
+ - `load_best_model_at_end`: True
299
+ - `batch_sampler`: no_duplicates
300
+
301
+ #### All Hyperparameters
302
+ <details><summary>Click to expand</summary>
303
+
304
+ - `overwrite_output_dir`: False
305
+ - `do_predict`: False
306
+ - `eval_strategy`: steps
307
+ - `prediction_loss_only`: True
308
+ - `per_device_train_batch_size`: 128
309
+ - `per_device_eval_batch_size`: 128
310
+ - `per_gpu_train_batch_size`: None
311
+ - `per_gpu_eval_batch_size`: None
312
+ - `gradient_accumulation_steps`: 1
313
+ - `eval_accumulation_steps`: None
314
+ - `torch_empty_cache_steps`: None
315
+ - `learning_rate`: 5e-05
316
+ - `weight_decay`: 0.01
317
+ - `adam_beta1`: 0.9
318
+ - `adam_beta2`: 0.999
319
+ - `adam_epsilon`: 1e-08
320
+ - `max_grad_norm`: 1.0
321
+ - `num_train_epochs`: 5
322
+ - `max_steps`: -1
323
+ - `lr_scheduler_type`: cosine_with_restarts
324
+ - `lr_scheduler_kwargs`: {}
325
+ - `warmup_ratio`: 0.1
326
+ - `warmup_steps`: 0
327
+ - `log_level`: passive
328
+ - `log_level_replica`: warning
329
+ - `log_on_each_node`: True
330
+ - `logging_nan_inf_filter`: True
331
+ - `save_safetensors`: True
332
+ - `save_on_each_node`: False
333
+ - `save_only_model`: False
334
+ - `restore_callback_states_from_checkpoint`: False
335
+ - `no_cuda`: False
336
+ - `use_cpu`: False
337
+ - `use_mps_device`: False
338
+ - `seed`: 42
339
+ - `data_seed`: None
340
+ - `jit_mode_eval`: False
341
+ - `use_ipex`: False
342
+ - `bf16`: False
343
+ - `fp16`: True
344
+ - `fp16_opt_level`: O1
345
+ - `half_precision_backend`: auto
346
+ - `bf16_full_eval`: False
347
+ - `fp16_full_eval`: False
348
+ - `tf32`: None
349
+ - `local_rank`: 0
350
+ - `ddp_backend`: None
351
+ - `tpu_num_cores`: None
352
+ - `tpu_metrics_debug`: False
353
+ - `debug`: []
354
+ - `dataloader_drop_last`: False
355
+ - `dataloader_num_workers`: 0
356
+ - `dataloader_prefetch_factor`: None
357
+ - `past_index`: -1
358
+ - `disable_tqdm`: False
359
+ - `remove_unused_columns`: True
360
+ - `label_names`: None
361
+ - `load_best_model_at_end`: True
362
+ - `ignore_data_skip`: False
363
+ - `fsdp`: []
364
+ - `fsdp_min_num_params`: 0
365
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
366
+ - `fsdp_transformer_layer_cls_to_wrap`: None
367
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
368
+ - `deepspeed`: None
369
+ - `label_smoothing_factor`: 0.0
370
+ - `optim`: adamw_torch
371
+ - `optim_args`: None
372
+ - `adafactor`: False
373
+ - `group_by_length`: False
374
+ - `length_column_name`: length
375
+ - `ddp_find_unused_parameters`: None
376
+ - `ddp_bucket_cap_mb`: None
377
+ - `ddp_broadcast_buffers`: False
378
+ - `dataloader_pin_memory`: True
379
+ - `dataloader_persistent_workers`: False
380
+ - `skip_memory_metrics`: True
381
+ - `use_legacy_prediction_loop`: False
382
+ - `push_to_hub`: False
383
+ - `resume_from_checkpoint`: None
384
+ - `hub_model_id`: None
385
+ - `hub_strategy`: every_save
386
+ - `hub_private_repo`: None
387
+ - `hub_always_push`: False
388
+ - `gradient_checkpointing`: False
389
+ - `gradient_checkpointing_kwargs`: None
390
+ - `include_inputs_for_metrics`: False
391
+ - `include_for_metrics`: []
392
+ - `eval_do_concat_batches`: True
393
+ - `fp16_backend`: auto
394
+ - `push_to_hub_model_id`: None
395
+ - `push_to_hub_organization`: None
396
+ - `mp_parameters`:
397
+ - `auto_find_batch_size`: False
398
+ - `full_determinism`: False
399
+ - `torchdynamo`: None
400
+ - `ray_scope`: last
401
+ - `ddp_timeout`: 1800
402
+ - `torch_compile`: False
403
+ - `torch_compile_backend`: None
404
+ - `torch_compile_mode`: None
405
+ - `dispatch_batches`: None
406
+ - `split_batches`: None
407
+ - `include_tokens_per_second`: False
408
+ - `include_num_input_tokens_seen`: False
409
+ - `neftune_noise_alpha`: None
410
+ - `optim_target_modules`: None
411
+ - `batch_eval_metrics`: False
412
+ - `eval_on_start`: False
413
+ - `use_liger_kernel`: False
414
+ - `eval_use_gather_object`: False
415
+ - `average_tokens_across_devices`: False
416
+ - `prompts`: None
417
+ - `batch_sampler`: no_duplicates
418
+ - `multi_dataset_batch_sampler`: proportional
419
+
420
+ </details>
421
+
422
+ ### Training Logs
423
+ | Epoch | Step | Training Loss | Validation Loss | telecom-ir-eval_cosine_ndcg@10 |
424
+ |:----------:|:------:|:-------------:|:---------------:|:------------------------------:|
425
+ | 0.3659 | 15 | 0.5651 | 0.1124 | 0.9593 |
426
+ | 0.7317 | 30 | 0.144 | 0.0674 | 0.9713 |
427
+ | 1.0976 | 45 | 0.0783 | 0.0605 | 0.9730 |
428
+ | **1.4634** | **60** | **0.0633** | **0.0607** | **0.9753** |
429
+ | 1.8293 | 75 | 0.0469 | 0.0570 | 0.9749 |
430
+ | 2.1951 | 90 | 0.0297 | 0.0568 | 0.9755 |
431
+ | 2.5610 | 105 | 0.0287 | 0.0583 | 0.9749 |
432
+ | 2.9268 | 120 | 0.0266 | 0.0594 | 0.9747 |
433
+ | 3.2927 | 135 | 0.0196 | 0.0604 | 0.9738 |
434
+ | 3.6585 | 150 | 0.0191 | 0.0609 | 0.9742 |
435
+ | 4.0244 | 165 | 0.0167 | 0.0608 | 0.9749 |
436
+ | 4.3902 | 180 | 0.0165 | 0.0611 | 0.9746 |
437
+ | 4.7561 | 195 | 0.016 | 0.0611 | 0.9746 |
438
+ | 5.0 | 205 | - | - | 0.9753 |
439
+
440
+ * The bold row denotes the saved checkpoint.
441
+
442
+ ### Framework Versions
443
+ - Python: 3.10.12
444
+ - Sentence Transformers: 3.3.1
445
+ - Transformers: 4.47.1
446
+ - PyTorch: 2.5.1+cu121
447
+ - Accelerate: 1.2.1
448
+ - Datasets: 3.2.0
449
+ - Tokenizers: 0.21.0
450
+
451
+ ## Citation
452
+
453
+ ### BibTeX
454
+
455
+ #### Sentence Transformers
456
+ ```bibtex
457
+ @inproceedings{reimers-2019-sentence-bert,
458
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
459
+ author = "Reimers, Nils and Gurevych, Iryna",
460
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
461
+ month = "11",
462
+ year = "2019",
463
+ publisher = "Association for Computational Linguistics",
464
+ url = "https://arxiv.org/abs/1908.10084",
465
+ }
466
+ ```
467
+
468
+ #### MultipleNegativesRankingLoss
469
+ ```bibtex
470
+ @misc{henderson2017efficient,
471
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
472
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
473
+ year={2017},
474
+ eprint={1705.00652},
475
+ archivePrefix={arXiv},
476
+ primaryClass={cs.CL}
477
+ }
478
+ ```
479
+
480
+ <!--
481
+ ## Glossary
482
+
483
+ *Clearly define terms in order to be accessible across audiences.*
484
+ -->
485
+
486
+ <!--
487
+ ## Model Card Authors
488
+
489
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
490
+ -->
491
+
492
+ <!--
493
+ ## Model Card Contact
494
+
495
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
496
+ -->
config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-small-en-v1.5",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "id2label": {
12
+ "0": "LABEL_0"
13
+ },
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 1536,
16
+ "label2id": {
17
+ "LABEL_0": 0
18
+ },
19
+ "layer_norm_eps": 1e-12,
20
+ "max_position_embeddings": 512,
21
+ "model_type": "bert",
22
+ "num_attention_heads": 12,
23
+ "num_hidden_layers": 12,
24
+ "pad_token_id": 0,
25
+ "position_embedding_type": "absolute",
26
+ "torch_dtype": "float32",
27
+ "transformers_version": "4.47.1",
28
+ "type_vocab_size": 2,
29
+ "use_cache": true,
30
+ "vocab_size": 30522
31
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.47.1",
5
+ "pytorch": "2.5.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e3a89325a91a1814f74f9f16c67b9e60d4e246ff9577a9858772f23410241b1d
3
+ size 133462128
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "extra_special_tokens": {},
49
+ "mask_token": "[MASK]",
50
+ "model_max_length": 512,
51
+ "never_split": null,
52
+ "pad_token": "[PAD]",
53
+ "sep_token": "[SEP]",
54
+ "strip_accents": null,
55
+ "tokenize_chinese_chars": true,
56
+ "tokenizer_class": "BertTokenizer",
57
+ "unk_token": "[UNK]"
58
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff