|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: t5-base-asqa-cb |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# t5-base-asqa-cb |
|
|
|
This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the [ASQA](https://huggingface.co/datasets/din0s/asqa) dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.7489 |
|
- Rougelsum: 26.6134 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 50 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rougelsum | |
|
|:-------------:|:-----:|:-----:|:---------------:|:---------:| |
|
| No log | 1.0 | 273 | 2.9648 | 23.8374 | |
|
| 3.5538 | 2.0 | 546 | 2.9054 | 24.2701 | |
|
| 3.5538 | 3.0 | 819 | 2.8744 | 24.4172 | |
|
| 3.1468 | 4.0 | 1092 | 2.8557 | 24.5949 | |
|
| 3.1468 | 5.0 | 1365 | 2.8400 | 24.7069 | |
|
| 3.0711 | 6.0 | 1638 | 2.8280 | 24.8685 | |
|
| 3.0711 | 7.0 | 1911 | 2.8191 | 24.9829 | |
|
| 3.0348 | 8.0 | 2184 | 2.8109 | 25.0908 | |
|
| 3.0348 | 9.0 | 2457 | 2.8038 | 25.2485 | |
|
| 2.9962 | 10.0 | 2730 | 2.7978 | 25.3279 | |
|
| 2.9635 | 11.0 | 3003 | 2.7920 | 25.4465 | |
|
| 2.9635 | 12.0 | 3276 | 2.7878 | 25.5927 | |
|
| 2.9328 | 13.0 | 3549 | 2.7833 | 25.6925 | |
|
| 2.9328 | 14.0 | 3822 | 2.7809 | 25.7563 | |
|
| 2.9126 | 15.0 | 4095 | 2.7773 | 25.8123 | |
|
| 2.9126 | 16.0 | 4368 | 2.7747 | 25.9039 | |
|
| 2.8878 | 17.0 | 4641 | 2.7719 | 25.9636 | |
|
| 2.8878 | 18.0 | 4914 | 2.7693 | 26.0025 | |
|
| 2.8744 | 19.0 | 5187 | 2.7673 | 26.0578 | |
|
| 2.8744 | 20.0 | 5460 | 2.7656 | 26.1161 | |
|
| 2.8579 | 21.0 | 5733 | 2.7629 | 26.1490 | |
|
| 2.8418 | 22.0 | 6006 | 2.7614 | 26.1830 | |
|
| 2.8418 | 23.0 | 6279 | 2.7604 | 26.2146 | |
|
| 2.8256 | 24.0 | 6552 | 2.7586 | 26.2899 | |
|
| 2.8256 | 25.0 | 6825 | 2.7586 | 26.2724 | |
|
| 2.8093 | 26.0 | 7098 | 2.7566 | 26.3183 | |
|
| 2.8093 | 27.0 | 7371 | 2.7551 | 26.3365 | |
|
| 2.8083 | 28.0 | 7644 | 2.7546 | 26.3950 | |
|
| 2.8083 | 29.0 | 7917 | 2.7537 | 26.4357 | |
|
| 2.7917 | 30.0 | 8190 | 2.7529 | 26.4681 | |
|
| 2.7917 | 31.0 | 8463 | 2.7526 | 26.5021 | |
|
| 2.785 | 32.0 | 8736 | 2.7512 | 26.5241 | |
|
| 2.7779 | 33.0 | 9009 | 2.7510 | 26.5361 | |
|
| 2.7779 | 34.0 | 9282 | 2.7502 | 26.5620 | |
|
| 2.771 | 35.0 | 9555 | 2.7495 | 26.6038 | |
|
| 2.771 | 36.0 | 9828 | 2.7488 | 26.6161 | |
|
| 2.7647 | 37.0 | 10101 | 2.7489 | 26.6134 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.23.0.dev0 |
|
- Pytorch 1.12.1+cu102 |
|
- Datasets 2.4.0 |
|
- Tokenizers 0.12.1 |
|
|