Music genre classification is a fundamental and versatile application in many various domains. Some possible use cases for music genre classification include:

  • music recommendation systems;
  • content organization and discovery;
  • radio broadcasting and programming;
  • music licensing and copyright management;
  • music analysis and research;
  • content tagging and metadata enrichment;
  • audio identification and copyright protection;
  • music production and creativity;
  • healthcare and therapy;
  • entertainment and gaming.

The model is trained based on publicly available dataset of labeled music data โ€” GTZAN Dataset โ€” that contains 1000 sample 30-second audio files evenly split among 10 genres:

  • blues;
  • classical;
  • country;
  • disco;
  • hip-hop;
  • jazz;
  • metal;
  • pop;
  • reggae;
  • rock.

The final code is available as a Kaggle notebook. See also my Medium article for more details.

Downloads last month
532
Safetensors
Model size
94.6M params
Tensor type
F32
ยท
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for dima806/music_genres_classification

Finetuned
(123)
this model
Finetunes
2 models