|
--- |
|
license: apache-2.0 |
|
metrics: |
|
- accuracy |
|
- f1 |
|
base_model: |
|
- google/vit-base-patch16-224-in21k |
|
pipeline_tag: image-classification |
|
library_name: transformers |
|
--- |
|
Returns the clothes category with about 78% accuracy based on an image. |
|
|
|
See https://www.kaggle.com/code/dima806/clothes-image-detection-vit for details. |
|
|
|
 |
|
|
|
``` |
|
Classification report: |
|
|
|
precision recall f1-score support |
|
|
|
Blazer 0.7419 0.6900 0.7150 200 |
|
Coat 0.7512 0.7550 0.7531 200 |
|
Denim Jacket 0.8592 0.9150 0.8862 200 |
|
Dresses 0.8603 0.7700 0.8127 200 |
|
Hoodie 0.6985 0.9500 0.8051 200 |
|
Jacket 0.7686 0.4650 0.5794 200 |
|
Jeans 0.8657 0.8700 0.8678 200 |
|
Long Pants 0.8112 0.7950 0.8030 200 |
|
Polo 0.7929 0.5550 0.6529 200 |
|
Shirt 0.7430 0.7950 0.7681 200 |
|
Shorts 0.9149 0.8600 0.8866 200 |
|
Skirt 0.8102 0.8750 0.8413 200 |
|
Sports Jacket 0.6562 0.7350 0.6934 200 |
|
Sweater 0.7758 0.8650 0.8180 200 |
|
T-shirt 0.7743 0.8750 0.8216 200 |
|
|
|
accuracy 0.7847 3000 |
|
macro avg 0.7883 0.7847 0.7803 3000 |
|
weighted avg 0.7883 0.7847 0.7803 3000 |
|
``` |