|
--- |
|
license: mit |
|
language: |
|
- en |
|
base_model: |
|
- microsoft/Florence-2-large |
|
datasets: |
|
- diffusers/ShotDEAD-v0 |
|
--- |
|
# Shot Categorizer 🎬 |
|
|
|
<div align="center"> |
|
<img src="assets/header.jpg"/> |
|
</div> |
|
|
|
Shot categorization model finetuned from the [`microsoft/Florence-2-large`](https://huggingface.co/microsoft/Florence-2-large) model. This |
|
model can be used to obtain metadata information about shots which can further be used to curate datasets of different kinds. |
|
|
|
Training configuration: |
|
|
|
* Batch size: 16 |
|
* Gradient accumulation steps: 4 |
|
* Learning rate: 1e-6 |
|
* Epochs: 20 |
|
* Max grad norm: 1.0 |
|
* Hardware: 8xH100s |
|
|
|
Training was conducted using FP16 mixed-precision and DeepSpeed Zero2 scheme. The vision tower of the model |
|
was kept frozen during the training. We used the [diffusers/ShotDEAD-v0](https://huggingface.co/datasets/diffusers/ShotDEAD-v0) |
|
dataset for conducting training. |
|
|
|
Training code is available [here](https://github.com/huggingface/movie-shot-categorizer). |
|
|
|
## Inference |
|
|
|
```py |
|
from transformers import AutoModelForCausalLM, AutoProcessor |
|
import torch |
|
from PIL import Image |
|
import requests |
|
|
|
|
|
folder_path = "diffusers/shot-categorizer-v0" |
|
model = ( |
|
AutoModelForCausalLM.from_pretrained(folder_path, torch_dtype=torch.float16, trust_remote_code=True) |
|
.to("cuda") |
|
.eval() |
|
) |
|
processor = AutoProcessor.from_pretrained(folder_path, trust_remote_code=True) |
|
|
|
prompts = ["<COLOR>", "<LIGHTING>", "<LIGHTING_TYPE>", "<COMPOSITION>"] |
|
img_path = "./assets/image_3.jpg" |
|
image = Image.open(img_path).convert("RGB") |
|
|
|
with torch.no_grad() and torch.inference_mode(): |
|
for prompt in prompts: |
|
inputs = processor(text=prompt, images=image, return_tensors="pt").to("cuda", torch.float16) |
|
generated_ids = model.generate( |
|
input_ids=inputs["input_ids"], |
|
pixel_values=inputs["pixel_values"], |
|
max_new_tokens=1024, |
|
early_stopping=False, |
|
do_sample=False, |
|
num_beams=3, |
|
) |
|
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0] |
|
parsed_answer = processor.post_process_generation( |
|
generated_text, task=prompt, image_size=(image.width, image.height) |
|
) |
|
print(parsed_answer) |
|
|
|
``` |
|
|
|
Should print: |
|
|
|
```bash |
|
{'<COLOR>': 'Cool, Saturated, Cyan, Blue'} |
|
{'<LIGHTING>': 'Soft light, Low contrast'} |
|
{'<LIGHTING_TYPE>': 'Daylight, Sunny'} |
|
{'<COMPOSITION>': 'Left heavy'} |
|
``` |