VerbCentric-RIS / train_angular_verb.py
dianecy's picture
Upload train_angular_verb.py with huggingface_hub
5f108e9 verified
import argparse
import datetime
import os
import shutil
import sys
import time
import warnings
from functools import partial
import cv2
import torch
import torch.cuda.amp as amp
import torch.distributed as dist
import torch.multiprocessing as mp
import torch.nn as nn
import torch.nn.parallel
import torch.optim
import torch.utils.data as data
from loguru import logger
from torch.optim.lr_scheduler import MultiStepLR
import utils.config as config
import wandb
# from engine.engine_verbonly import train, validate
# from engine.engine_verbonly_hardneg import train, validate
from utils.misc import (init_random_seed, set_random_seed, setup_logger,
worker_init_fn)
warnings.filterwarnings("ignore")
cv2.setNumThreads(0)
def get_parser():
parser = argparse.ArgumentParser(
description='Pytorch Referring Expression Segmentation')
parser.add_argument('--config',
default='path to xxx.yaml',
type=str,
help='config file')
parser.add_argument('--opts',
default=None,
nargs=argparse.REMAINDER,
help='override some settings in the config.')
args = parser.parse_args()
assert args.config is not None
cfg = config.load_cfg_from_cfg_file(args.config)
if args.opts is not None:
cfg = config.merge_cfg_from_list(cfg, args.opts)
return cfg
@logger.catch
def main():
args = get_parser()
args.manual_seed = init_random_seed(args.manual_seed)
set_random_seed(args.manual_seed, deterministic=False)
args.ngpus_per_node = torch.cuda.device_count()
args.world_size = args.ngpus_per_node * args.world_size
if not torch.cuda.is_available():
raise RuntimeError("CUDA is not available!")
mp.spawn(main_worker, nprocs=args.ngpus_per_node, args=(args,), join=True)
def main_worker(gpu, args):
args.output_dir = os.path.join(args.output_folder, args.exp_name)
# local rank & global rank
args.gpu = gpu
args.rank = args.rank * args.ngpus_per_node + gpu
torch.cuda.set_device(args.gpu)
# logger
setup_logger(args.output_dir,
distributed_rank=args.gpu,
filename="train.log",
mode="a")
# dist init
dist.init_process_group(backend=args.dist_backend,
init_method=args.dist_url,
world_size=args.world_size,
rank=args.rank)
print(f"Initializing process: GPU {gpu}, Rank {args.rank}, World Size {args.world_size}")
# wandb
if args.rank == 0:
# wandb.login(key='0363308e57fadd5c07e9294b934f64f27448b968')
wandb.login(key='1a67d591f30466a974d6f41d1437f870ab462dc8') #chaeyun
print('login succeeded!')
print()
if args.rank == 0:
wandb.init(job_type="training",
mode="online",
config=args,
project="Hardpos_CRIS",
# project="debug",
name=args.exp_name,
tags=[args.dataset, args.clip_pretrain])
dist.barrier()
# build model
if args.metric_mode == "original" :
from engine.engine import train, validate
from model_ import build_segmenter_original
from utils.dataset import RefDataset
model, param_list = build_segmenter_original(args)
elif args.metric_mode == "hardpos_only" or args.metric_mode == "hardpos_only_op2":
from engine.engine_verbonly import train, validate
from model_ import build_segmenter_pos
from utils.dataset_verbonly import RefDataset
model, param_list = build_segmenter_pos(args)
elif "hardpos_only_rev" in args.metric_mode :
from engine.engine_verbonly import train, validate
from model_ import build_segmenter_pos_rev
from utils.dataset_verbonly import RefDataset
model, param_list = build_segmenter_pos_rev(args)
else :
from engine.engine_verbonly_hardneg import train, validate
from model_ import build_segmenter
from utils.dataset_verbonly import RefDataset
model, param_list = build_segmenter(args)
if args.sync_bn:
model = nn.SyncBatchNorm.convert_sync_batchnorm(model)
logger.info(model)
model = nn.parallel.DistributedDataParallel(model.cuda(),
device_ids=[args.gpu],
find_unused_parameters=True)
dist.barrier()
# build optimizer & lr scheduler
optimizer = torch.optim.Adam(param_list,
lr=args.base_lr,
weight_decay=args.weight_decay)
scheduler = MultiStepLR(optimizer,
milestones=args.milestones,
gamma=args.lr_decay)
scaler = amp.GradScaler()
# build dataset
### dataset check
assert os.path.exists(args.train_lmdb), f"Train LMDB path {args.train_lmdb} does not exist."
assert os.path.exists(args.mask_root), f"Mask root path {args.mask_root} does not exist."
assert os.path.exists(args.val_lmdb), f"Val LMDB path {args.val_lmdb} does not exist."
args.batch_size = int(args.batch_size / args.ngpus_per_node)
args.batch_size_val = int(args.batch_size_val / args.ngpus_per_node)
args.workers = int(
(args.workers + args.ngpus_per_node - 1) / args.ngpus_per_node)
# dataset check 2
# load는 되는가?
try:
dataset = RefDataset(lmdb_dir=args.train_lmdb,
mask_dir=args.mask_root,
dataset=args.dataset,
split=args.train_split,
mode='train',
input_size=args.input_size,
word_length=args.word_len,
args=args)
print(f"Dataset size: {len(dataset)}")
except Exception as e:
print(f"Dataset initialization error: {e}")
train_data = RefDataset(lmdb_dir=args.train_lmdb,
mask_dir=args.mask_root,
dataset=args.dataset,
split=args.train_split,
mode='train',
input_size=args.input_size,
word_length=args.word_len,
args=args)
val_data = RefDataset(lmdb_dir=args.val_lmdb,
mask_dir=args.mask_root,
dataset=args.dataset,
split=args.val_split,
mode='val',
input_size=args.input_size,
word_length=args.word_len,
args=args)
print("Successfully loaded datasets!")
# build dataloader
init_fn = partial(worker_init_fn,
num_workers=args.workers,
rank=args.rank,
seed=args.manual_seed)
train_sampler = data.distributed.DistributedSampler(train_data,
shuffle=True)
val_sampler = data.distributed.DistributedSampler(val_data, shuffle=False)
train_loader = data.DataLoader(train_data,
batch_size=args.batch_size,
shuffle=False,
num_workers=args.workers,
pin_memory=True,
worker_init_fn=init_fn,
sampler=train_sampler,
drop_last=True)
val_loader = data.DataLoader(val_data,
batch_size=args.batch_size_val,
shuffle=False,
num_workers=args.workers_val,
pin_memory=True,
sampler=val_sampler,
drop_last=True)
print("Successfully loaded dataloaders!")
best_IoU = 0.0
best_oIoU = 0.0
# resume
if args.resume:
path = None
if os.path.isfile(args.resume):
path = args.resume
elif args.resume == 'latest':
# Check if the output directory exists and list its contents
dirs = os.listdir(args.output_dir)
if "last_model.pth" in dirs:
path = os.path.join(args.output_dir, "last_model.pth")
if path is None or not os.path.isfile(path):
# If no valid checkpoint is found
print(f"Checkpoint '{path}' does not exist. Starting a new training run.")
else:
logger.info(f"=> loading checkpoint '{path}'")
# checkpoint = torch.load(path)
checkpoint = torch.load(path, map_location='cpu')
args.start_epoch = checkpoint['epoch']
best_IoU = checkpoint["best_iou"]
best_oIoU = checkpoint["best_oiou"]
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
scheduler.load_state_dict(checkpoint['scheduler'])
logger.info(f"=> loaded checkpoint '{path}' (epoch {checkpoint['epoch']})")
# if args.resume:
# if os.path.isfile(args.resume):
# logger.info("=> loading checkpoint '{}'".format(args.resume))
# # Define a function to map the location
# # def map_location_fn(storage, loc):
# # return storage.cuda()
# # checkpoint = torch.load(args.resume, map_location=map_location_fn)
# checkpoint = torch.load(args.resume)
# args.start_epoch = checkpoint['epoch']
# best_IoU = checkpoint["best_iou"]
# best_oIoU = checkpoint["best_oiou"]
# model.load_state_dict(checkpoint['state_dict'])
# optimizer.load_state_dict(checkpoint['optimizer'])
# scheduler.load_state_dict(checkpoint['scheduler'])
# logger.info("=> loaded checkpoint '{}' (epoch {})".format(args.resume, checkpoint['epoch']))
# else:
# raise ValueError(
# "=> resume failed! no checkpoint found at '{}'. Please check args.resume again!"
# .format(args.resume))
# start training
start_time = time.time()
for epoch in range(args.start_epoch, args.epochs):
epoch_log = epoch + 1
# shuffle loader
train_sampler.set_epoch(epoch_log)
# train
train(train_loader, model, optimizer, scheduler, scaler, epoch_log,
args)
# evaluation
iou, oiou, prec_dict = validate(val_loader, model, epoch_log, args)
# save model
if dist.get_rank() == 0:
lastname = os.path.join(args.output_dir, "last_model.pth")
torch.save(
{
'epoch': epoch_log,
'cur_iou': iou,
'best_iou': best_IoU,
'best_oiou' : best_oIoU,
'prec': prec_dict,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
'scheduler': scheduler.state_dict()
}, lastname)
if iou >= best_IoU:
best_IoU = iou
bestname = os.path.join(args.output_dir, "best_model_miou.pth")
shutil.copyfile(lastname, bestname)
if oiou >= best_oIoU :
best_oIoU = oiou
bestname_oiou = os.path.join(args.output_dir, "best_model_oiou.pth")
shutil.copyfile(lastname, bestname_oiou)
# update lr
scheduler.step(epoch_log)
torch.cuda.empty_cache()
time.sleep(2)
if dist.get_rank() == 0:
wandb.finish()
logger.info("* Best IoU={} * ".format(best_IoU))
logger.info("* Best oIoU={} * ".format(best_oIoU))
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
logger.info('* Training time {} *'.format(total_time_str))
if __name__ == '__main__':
main()
sys.exit(0)