File size: 12,834 Bytes
5f108e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 |
import argparse
import datetime
import os
import shutil
import sys
import time
import warnings
from functools import partial
import cv2
import torch
import torch.cuda.amp as amp
import torch.distributed as dist
import torch.multiprocessing as mp
import torch.nn as nn
import torch.nn.parallel
import torch.optim
import torch.utils.data as data
from loguru import logger
from torch.optim.lr_scheduler import MultiStepLR
import utils.config as config
import wandb
# from engine.engine_verbonly import train, validate
# from engine.engine_verbonly_hardneg import train, validate
from utils.misc import (init_random_seed, set_random_seed, setup_logger,
worker_init_fn)
warnings.filterwarnings("ignore")
cv2.setNumThreads(0)
def get_parser():
parser = argparse.ArgumentParser(
description='Pytorch Referring Expression Segmentation')
parser.add_argument('--config',
default='path to xxx.yaml',
type=str,
help='config file')
parser.add_argument('--opts',
default=None,
nargs=argparse.REMAINDER,
help='override some settings in the config.')
args = parser.parse_args()
assert args.config is not None
cfg = config.load_cfg_from_cfg_file(args.config)
if args.opts is not None:
cfg = config.merge_cfg_from_list(cfg, args.opts)
return cfg
@logger.catch
def main():
args = get_parser()
args.manual_seed = init_random_seed(args.manual_seed)
set_random_seed(args.manual_seed, deterministic=False)
args.ngpus_per_node = torch.cuda.device_count()
args.world_size = args.ngpus_per_node * args.world_size
if not torch.cuda.is_available():
raise RuntimeError("CUDA is not available!")
mp.spawn(main_worker, nprocs=args.ngpus_per_node, args=(args,), join=True)
def main_worker(gpu, args):
args.output_dir = os.path.join(args.output_folder, args.exp_name)
# local rank & global rank
args.gpu = gpu
args.rank = args.rank * args.ngpus_per_node + gpu
torch.cuda.set_device(args.gpu)
# logger
setup_logger(args.output_dir,
distributed_rank=args.gpu,
filename="train.log",
mode="a")
# dist init
dist.init_process_group(backend=args.dist_backend,
init_method=args.dist_url,
world_size=args.world_size,
rank=args.rank)
print(f"Initializing process: GPU {gpu}, Rank {args.rank}, World Size {args.world_size}")
# wandb
if args.rank == 0:
# wandb.login(key='0363308e57fadd5c07e9294b934f64f27448b968')
wandb.login(key='1a67d591f30466a974d6f41d1437f870ab462dc8') #chaeyun
print('login succeeded!')
print()
if args.rank == 0:
wandb.init(job_type="training",
mode="online",
config=args,
project="Hardpos_CRIS",
# project="debug",
name=args.exp_name,
tags=[args.dataset, args.clip_pretrain])
dist.barrier()
# build model
if args.metric_mode == "original" :
from engine.engine import train, validate
from model_ import build_segmenter_original
from utils.dataset import RefDataset
model, param_list = build_segmenter_original(args)
elif args.metric_mode == "hardpos_only" or args.metric_mode == "hardpos_only_op2":
from engine.engine_verbonly import train, validate
from model_ import build_segmenter_pos
from utils.dataset_verbonly import RefDataset
model, param_list = build_segmenter_pos(args)
elif "hardpos_only_rev" in args.metric_mode :
from engine.engine_verbonly import train, validate
from model_ import build_segmenter_pos_rev
from utils.dataset_verbonly import RefDataset
model, param_list = build_segmenter_pos_rev(args)
else :
from engine.engine_verbonly_hardneg import train, validate
from model_ import build_segmenter
from utils.dataset_verbonly import RefDataset
model, param_list = build_segmenter(args)
if args.sync_bn:
model = nn.SyncBatchNorm.convert_sync_batchnorm(model)
logger.info(model)
model = nn.parallel.DistributedDataParallel(model.cuda(),
device_ids=[args.gpu],
find_unused_parameters=True)
dist.barrier()
# build optimizer & lr scheduler
optimizer = torch.optim.Adam(param_list,
lr=args.base_lr,
weight_decay=args.weight_decay)
scheduler = MultiStepLR(optimizer,
milestones=args.milestones,
gamma=args.lr_decay)
scaler = amp.GradScaler()
# build dataset
### dataset check
assert os.path.exists(args.train_lmdb), f"Train LMDB path {args.train_lmdb} does not exist."
assert os.path.exists(args.mask_root), f"Mask root path {args.mask_root} does not exist."
assert os.path.exists(args.val_lmdb), f"Val LMDB path {args.val_lmdb} does not exist."
args.batch_size = int(args.batch_size / args.ngpus_per_node)
args.batch_size_val = int(args.batch_size_val / args.ngpus_per_node)
args.workers = int(
(args.workers + args.ngpus_per_node - 1) / args.ngpus_per_node)
# dataset check 2
# load는 되는가?
try:
dataset = RefDataset(lmdb_dir=args.train_lmdb,
mask_dir=args.mask_root,
dataset=args.dataset,
split=args.train_split,
mode='train',
input_size=args.input_size,
word_length=args.word_len,
args=args)
print(f"Dataset size: {len(dataset)}")
except Exception as e:
print(f"Dataset initialization error: {e}")
train_data = RefDataset(lmdb_dir=args.train_lmdb,
mask_dir=args.mask_root,
dataset=args.dataset,
split=args.train_split,
mode='train',
input_size=args.input_size,
word_length=args.word_len,
args=args)
val_data = RefDataset(lmdb_dir=args.val_lmdb,
mask_dir=args.mask_root,
dataset=args.dataset,
split=args.val_split,
mode='val',
input_size=args.input_size,
word_length=args.word_len,
args=args)
print("Successfully loaded datasets!")
# build dataloader
init_fn = partial(worker_init_fn,
num_workers=args.workers,
rank=args.rank,
seed=args.manual_seed)
train_sampler = data.distributed.DistributedSampler(train_data,
shuffle=True)
val_sampler = data.distributed.DistributedSampler(val_data, shuffle=False)
train_loader = data.DataLoader(train_data,
batch_size=args.batch_size,
shuffle=False,
num_workers=args.workers,
pin_memory=True,
worker_init_fn=init_fn,
sampler=train_sampler,
drop_last=True)
val_loader = data.DataLoader(val_data,
batch_size=args.batch_size_val,
shuffle=False,
num_workers=args.workers_val,
pin_memory=True,
sampler=val_sampler,
drop_last=True)
print("Successfully loaded dataloaders!")
best_IoU = 0.0
best_oIoU = 0.0
# resume
if args.resume:
path = None
if os.path.isfile(args.resume):
path = args.resume
elif args.resume == 'latest':
# Check if the output directory exists and list its contents
dirs = os.listdir(args.output_dir)
if "last_model.pth" in dirs:
path = os.path.join(args.output_dir, "last_model.pth")
if path is None or not os.path.isfile(path):
# If no valid checkpoint is found
print(f"Checkpoint '{path}' does not exist. Starting a new training run.")
else:
logger.info(f"=> loading checkpoint '{path}'")
# checkpoint = torch.load(path)
checkpoint = torch.load(path, map_location='cpu')
args.start_epoch = checkpoint['epoch']
best_IoU = checkpoint["best_iou"]
best_oIoU = checkpoint["best_oiou"]
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
scheduler.load_state_dict(checkpoint['scheduler'])
logger.info(f"=> loaded checkpoint '{path}' (epoch {checkpoint['epoch']})")
# if args.resume:
# if os.path.isfile(args.resume):
# logger.info("=> loading checkpoint '{}'".format(args.resume))
# # Define a function to map the location
# # def map_location_fn(storage, loc):
# # return storage.cuda()
# # checkpoint = torch.load(args.resume, map_location=map_location_fn)
# checkpoint = torch.load(args.resume)
# args.start_epoch = checkpoint['epoch']
# best_IoU = checkpoint["best_iou"]
# best_oIoU = checkpoint["best_oiou"]
# model.load_state_dict(checkpoint['state_dict'])
# optimizer.load_state_dict(checkpoint['optimizer'])
# scheduler.load_state_dict(checkpoint['scheduler'])
# logger.info("=> loaded checkpoint '{}' (epoch {})".format(args.resume, checkpoint['epoch']))
# else:
# raise ValueError(
# "=> resume failed! no checkpoint found at '{}'. Please check args.resume again!"
# .format(args.resume))
# start training
start_time = time.time()
for epoch in range(args.start_epoch, args.epochs):
epoch_log = epoch + 1
# shuffle loader
train_sampler.set_epoch(epoch_log)
# train
train(train_loader, model, optimizer, scheduler, scaler, epoch_log,
args)
# evaluation
iou, oiou, prec_dict = validate(val_loader, model, epoch_log, args)
# save model
if dist.get_rank() == 0:
lastname = os.path.join(args.output_dir, "last_model.pth")
torch.save(
{
'epoch': epoch_log,
'cur_iou': iou,
'best_iou': best_IoU,
'best_oiou' : best_oIoU,
'prec': prec_dict,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
'scheduler': scheduler.state_dict()
}, lastname)
if iou >= best_IoU:
best_IoU = iou
bestname = os.path.join(args.output_dir, "best_model_miou.pth")
shutil.copyfile(lastname, bestname)
if oiou >= best_oIoU :
best_oIoU = oiou
bestname_oiou = os.path.join(args.output_dir, "best_model_oiou.pth")
shutil.copyfile(lastname, bestname_oiou)
# update lr
scheduler.step(epoch_log)
torch.cuda.empty_cache()
time.sleep(2)
if dist.get_rank() == 0:
wandb.finish()
logger.info("* Best IoU={} * ".format(best_IoU))
logger.info("* Best oIoU={} * ".format(best_oIoU))
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
logger.info('* Training time {} *'.format(total_time_str))
if __name__ == '__main__':
main()
sys.exit(0) |