File size: 12,834 Bytes
5f108e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
import argparse
import datetime
import os
import shutil
import sys
import time
import warnings
from functools import partial

import cv2
import torch
import torch.cuda.amp as amp
import torch.distributed as dist
import torch.multiprocessing as mp
import torch.nn as nn
import torch.nn.parallel
import torch.optim
import torch.utils.data as data
from loguru import logger
from torch.optim.lr_scheduler import MultiStepLR

import utils.config as config
import wandb
# from engine.engine_verbonly import train, validate
# from engine.engine_verbonly_hardneg import train, validate
from utils.misc import (init_random_seed, set_random_seed, setup_logger,
                        worker_init_fn)

warnings.filterwarnings("ignore")
cv2.setNumThreads(0)


    
    
def get_parser():
    parser = argparse.ArgumentParser(
        description='Pytorch Referring Expression Segmentation')
    parser.add_argument('--config',
                        default='path to xxx.yaml',
                        type=str,
                        help='config file')
    parser.add_argument('--opts',
                        default=None,
                        nargs=argparse.REMAINDER,
                        help='override some settings in the config.')

    args = parser.parse_args()
    assert args.config is not None
    cfg = config.load_cfg_from_cfg_file(args.config)
    if args.opts is not None:
        cfg = config.merge_cfg_from_list(cfg, args.opts)
    return cfg


@logger.catch
def main():
    args = get_parser()
    args.manual_seed = init_random_seed(args.manual_seed)
    set_random_seed(args.manual_seed, deterministic=False)

    args.ngpus_per_node = torch.cuda.device_count()
    args.world_size = args.ngpus_per_node * args.world_size
    if not torch.cuda.is_available():
        raise RuntimeError("CUDA is not available!")
    mp.spawn(main_worker, nprocs=args.ngpus_per_node, args=(args,), join=True)


def main_worker(gpu, args):

    args.output_dir = os.path.join(args.output_folder, args.exp_name)

    # local rank & global rank
    args.gpu = gpu
    args.rank = args.rank * args.ngpus_per_node + gpu
    torch.cuda.set_device(args.gpu)

    # logger
    setup_logger(args.output_dir,
                    distributed_rank=args.gpu,
                    filename="train.log",
                    mode="a")

    # dist init
    dist.init_process_group(backend=args.dist_backend,
                            init_method=args.dist_url,
                            world_size=args.world_size,
                            rank=args.rank)

    print(f"Initializing process: GPU {gpu}, Rank {args.rank}, World Size {args.world_size}")

    # wandb
    if args.rank == 0:
        # wandb.login(key='0363308e57fadd5c07e9294b934f64f27448b968')
        wandb.login(key='1a67d591f30466a974d6f41d1437f870ab462dc8') #chaeyun
        print('login succeeded!')    
        print()
        if args.rank == 0:
            wandb.init(job_type="training",
                    mode="online",
                    config=args,
                    project="Hardpos_CRIS",
                    # project="debug",
                    name=args.exp_name,
                    tags=[args.dataset, args.clip_pretrain])
    dist.barrier()
    
    # build model
    if args.metric_mode == "original" :
        from engine.engine import train, validate
        from model_ import build_segmenter_original
        from utils.dataset import RefDataset

        model, param_list = build_segmenter_original(args)
        
    elif args.metric_mode == "hardpos_only" or args.metric_mode == "hardpos_only_op2":
        from engine.engine_verbonly import train, validate
        from model_ import build_segmenter_pos
        from utils.dataset_verbonly import RefDataset

        model, param_list = build_segmenter_pos(args)
    elif "hardpos_only_rev" in args.metric_mode :
        from engine.engine_verbonly import train, validate
        from model_ import build_segmenter_pos_rev
        from utils.dataset_verbonly import RefDataset
        model, param_list = build_segmenter_pos_rev(args)
    else : 
        from engine.engine_verbonly_hardneg import train, validate
        from model_ import build_segmenter
        from utils.dataset_verbonly import RefDataset
        model, param_list = build_segmenter(args)
        
    if args.sync_bn:
        model = nn.SyncBatchNorm.convert_sync_batchnorm(model)
    logger.info(model)
    model = nn.parallel.DistributedDataParallel(model.cuda(),
                                                device_ids=[args.gpu],
                                                find_unused_parameters=True)

    dist.barrier()

    # build optimizer & lr scheduler
    optimizer = torch.optim.Adam(param_list,
                                    lr=args.base_lr,
                                    weight_decay=args.weight_decay)
    scheduler = MultiStepLR(optimizer,
                            milestones=args.milestones,
                            gamma=args.lr_decay)

    scaler = amp.GradScaler()


    # build dataset
    ### dataset check
    assert os.path.exists(args.train_lmdb), f"Train LMDB path {args.train_lmdb} does not exist."
    assert os.path.exists(args.mask_root), f"Mask root path {args.mask_root} does not exist."
    assert os.path.exists(args.val_lmdb), f"Val LMDB path {args.val_lmdb} does not exist."

    args.batch_size = int(args.batch_size / args.ngpus_per_node)
    args.batch_size_val = int(args.batch_size_val / args.ngpus_per_node)
    args.workers = int(
        (args.workers + args.ngpus_per_node - 1) / args.ngpus_per_node)

    # dataset check 2

    # load는 되는가?
    try:
        dataset = RefDataset(lmdb_dir=args.train_lmdb,
                            mask_dir=args.mask_root,
                            dataset=args.dataset,
                            split=args.train_split,
                            mode='train',
                            input_size=args.input_size,
                            word_length=args.word_len,
                            args=args)
        print(f"Dataset size: {len(dataset)}")
    except Exception as e:
        print(f"Dataset initialization error: {e}")

    train_data = RefDataset(lmdb_dir=args.train_lmdb,
                            mask_dir=args.mask_root,
                            dataset=args.dataset,
                            split=args.train_split,
                            mode='train',
                            input_size=args.input_size,
                            word_length=args.word_len,
                            args=args)
    val_data = RefDataset(lmdb_dir=args.val_lmdb,
                            mask_dir=args.mask_root,
                            dataset=args.dataset,
                            split=args.val_split,
                            mode='val',
                            input_size=args.input_size,
                            word_length=args.word_len,
                            args=args)
    print("Successfully loaded datasets!")
    # build dataloader
    init_fn = partial(worker_init_fn,
                        num_workers=args.workers,
                        rank=args.rank,
                        seed=args.manual_seed)
    train_sampler = data.distributed.DistributedSampler(train_data,
                                                        shuffle=True)
    val_sampler = data.distributed.DistributedSampler(val_data, shuffle=False)
    train_loader = data.DataLoader(train_data,
                                    batch_size=args.batch_size,
                                    shuffle=False,
                                    num_workers=args.workers,
                                    pin_memory=True,
                                    worker_init_fn=init_fn,
                                    sampler=train_sampler,
                                    drop_last=True)
    val_loader = data.DataLoader(val_data,
                                    batch_size=args.batch_size_val,
                                    shuffle=False,
                                    num_workers=args.workers_val,
                                    pin_memory=True,
                                    sampler=val_sampler,
                                    drop_last=True)

    print("Successfully loaded dataloaders!")

    best_IoU = 0.0
    best_oIoU = 0.0
    # resume

    if args.resume:
        path = None
        if os.path.isfile(args.resume):
            path = args.resume
        elif args.resume == 'latest':
            # Check if the output directory exists and list its contents
            dirs = os.listdir(args.output_dir)
            if "last_model.pth" in dirs:
                path = os.path.join(args.output_dir, "last_model.pth")

        if path is None or not os.path.isfile(path):
            # If no valid checkpoint is found
            print(f"Checkpoint '{path}' does not exist. Starting a new training run.")
        else:
            logger.info(f"=> loading checkpoint '{path}'")
            # checkpoint = torch.load(path)
            checkpoint = torch.load(path, map_location='cpu')
            args.start_epoch = checkpoint['epoch']
            best_IoU = checkpoint["best_iou"]
            best_oIoU = checkpoint["best_oiou"]
            model.load_state_dict(checkpoint['state_dict'])
            optimizer.load_state_dict(checkpoint['optimizer'])
            scheduler.load_state_dict(checkpoint['scheduler'])
            logger.info(f"=> loaded checkpoint '{path}' (epoch {checkpoint['epoch']})")

    # if args.resume:
    #     if os.path.isfile(args.resume):
    #         logger.info("=> loading checkpoint '{}'".format(args.resume))
            
    #         # Define a function to map the location
    #         # def map_location_fn(storage, loc):
    #         #     return storage.cuda()
    #         # checkpoint = torch.load(args.resume, map_location=map_location_fn)
    #         checkpoint = torch.load(args.resume)
    #         args.start_epoch = checkpoint['epoch']
    #         best_IoU = checkpoint["best_iou"]
    #         best_oIoU = checkpoint["best_oiou"]
    #         model.load_state_dict(checkpoint['state_dict'])
    #         optimizer.load_state_dict(checkpoint['optimizer'])
    #         scheduler.load_state_dict(checkpoint['scheduler'])

    #         logger.info("=> loaded checkpoint '{}' (epoch {})".format(args.resume, checkpoint['epoch']))
    #     else:
    #         raise ValueError(
    #             "=> resume failed! no checkpoint found at '{}'. Please check args.resume again!"
    #             .format(args.resume))

    # start training
    start_time = time.time()
    for epoch in range(args.start_epoch, args.epochs):
        epoch_log = epoch + 1

        # shuffle loader
        train_sampler.set_epoch(epoch_log)

        # train
        train(train_loader, model, optimizer, scheduler, scaler, epoch_log,
                args)

        # evaluation
        iou, oiou, prec_dict = validate(val_loader, model, epoch_log, args)

        # save model
        if dist.get_rank() == 0:
            lastname = os.path.join(args.output_dir, "last_model.pth")
            torch.save(
                {
                    'epoch': epoch_log,
                    'cur_iou': iou,
                    'best_iou': best_IoU,
                    'best_oiou' : best_oIoU,
                    'prec': prec_dict,
                    'state_dict': model.state_dict(),
                    'optimizer': optimizer.state_dict(),
                    'scheduler': scheduler.state_dict()
                }, lastname)
            if iou >= best_IoU:
                best_IoU = iou
                bestname = os.path.join(args.output_dir, "best_model_miou.pth")
                shutil.copyfile(lastname, bestname)
            if oiou >= best_oIoU :
                best_oIoU = oiou
                bestname_oiou = os.path.join(args.output_dir, "best_model_oiou.pth")
                shutil.copyfile(lastname, bestname_oiou)                

        # update lr
        scheduler.step(epoch_log)
        torch.cuda.empty_cache()

    time.sleep(2)
    if dist.get_rank() == 0:
        wandb.finish()

    logger.info("* Best IoU={} * ".format(best_IoU))
    logger.info("* Best oIoU={} * ".format(best_oIoU))
    total_time = time.time() - start_time
    total_time_str = str(datetime.timedelta(seconds=int(total_time)))
    logger.info('* Training time {} *'.format(total_time_str))


if __name__ == '__main__':
    main()
    sys.exit(0)