|
""" |
|
Various positional encodings for the transformer. |
|
Modified from DETR (https://github.com/facebookresearch/detr) |
|
""" |
|
import math |
|
import torch |
|
from torch import nn |
|
|
|
from util.misc import NestedTensor |
|
|
|
|
|
class PositionEmbeddingSine1D(nn.Module): |
|
""" |
|
This is a more standard version of the position embedding, very similar to the one |
|
used by the Attention is all you need paper, generalized to work on images. |
|
""" |
|
def __init__(self, num_pos_feats=256, temperature=10000, normalize=False, scale=None): |
|
super().__init__() |
|
self.num_pos_feats = num_pos_feats |
|
self.temperature = temperature |
|
self.normalize = normalize |
|
if scale is not None and normalize is False: |
|
raise ValueError("normalize should be True if scale is passed") |
|
if scale is None: |
|
scale = 2 * math.pi |
|
self.scale = scale |
|
|
|
def forward(self, tensor_list: NestedTensor): |
|
x = tensor_list.tensors |
|
mask = tensor_list.mask |
|
assert mask is not None |
|
not_mask = ~mask |
|
x_embed = not_mask.cumsum(1, dtype=torch.float32) |
|
if self.normalize: |
|
eps = 1e-6 |
|
x_embed = x_embed / (x_embed[:, -1:] + eps) * self.scale |
|
|
|
dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device) |
|
dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats) |
|
|
|
pos_x = x_embed[:, :, None] / dim_t |
|
|
|
pos_x = torch.stack((pos_x[:, :, 0::2].sin(), pos_x[:, :, 1::2].cos()), dim=3).flatten(2) |
|
pos = pos_x.permute(0, 2, 1) |
|
return pos |
|
|
|
|
|
class PositionEmbeddingSine2D(nn.Module): |
|
""" |
|
This is a more standard version of the position embedding, very similar to the one |
|
used by the Attention is all you need paper, generalized to work on images. |
|
""" |
|
def __init__(self, num_pos_feats=64, temperature=10000, normalize=False, scale=None): |
|
super().__init__() |
|
self.num_pos_feats = num_pos_feats |
|
self.temperature = temperature |
|
self.normalize = normalize |
|
if scale is not None and normalize is False: |
|
raise ValueError("normalize should be True if scale is passed") |
|
if scale is None: |
|
scale = 2 * math.pi |
|
self.scale = scale |
|
|
|
def forward(self, tensor_list: NestedTensor): |
|
x = tensor_list.tensors |
|
mask = tensor_list.mask |
|
assert mask is not None |
|
not_mask = ~mask |
|
y_embed = not_mask.cumsum(1, dtype=torch.float32) |
|
x_embed = not_mask.cumsum(2, dtype=torch.float32) |
|
if self.normalize: |
|
eps = 1e-6 |
|
y_embed = (y_embed - 0.5) / (y_embed[:, -1:, :] + eps) * self.scale |
|
x_embed = (x_embed - 0.5) / (x_embed[:, :, -1:] + eps) * self.scale |
|
|
|
dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device) |
|
dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats) |
|
|
|
pos_x = x_embed[:, :, :, None] / dim_t |
|
pos_y = y_embed[:, :, :, None] / dim_t |
|
pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3) |
|
pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3) |
|
pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) |
|
return pos |
|
|
|
|
|
|
|
class PositionEmbeddingSine3D(nn.Module): |
|
""" |
|
This is a more standard version of the position embedding, very similar to the one |
|
used by the Attention is all you need paper, generalized to work on images. |
|
""" |
|
def __init__(self, num_pos_feats=64, num_frames=36, temperature=10000, normalize=False, scale=None): |
|
super().__init__() |
|
self.num_pos_feats = num_pos_feats |
|
self.temperature = temperature |
|
self.normalize = normalize |
|
self.frames = num_frames |
|
if scale is not None and normalize is False: |
|
raise ValueError("normalize should be True if scale is passed") |
|
if scale is None: |
|
scale = 2 * math.pi |
|
self.scale = scale |
|
|
|
def forward(self, tensor_list: NestedTensor): |
|
x = tensor_list.tensors |
|
mask = tensor_list.mask |
|
n,h,w = mask.shape |
|
mask = mask.reshape(n//self.frames, self.frames,h,w) |
|
assert mask is not None |
|
not_mask = ~mask |
|
z_embed = not_mask.cumsum(1, dtype=torch.float32) |
|
y_embed = not_mask.cumsum(2, dtype=torch.float32) |
|
x_embed = not_mask.cumsum(3, dtype=torch.float32) |
|
if self.normalize: |
|
eps = 1e-6 |
|
z_embed = z_embed / (z_embed[:, -1:, :, :] + eps) * self.scale |
|
y_embed = y_embed / (y_embed[:, :, -1:, :] + eps) * self.scale |
|
x_embed = x_embed / (x_embed[:, :, :, -1:] + eps) * self.scale |
|
|
|
dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device) |
|
dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats) |
|
|
|
pos_x = x_embed[:, :, :, :, None] / dim_t |
|
pos_y = y_embed[:, :, :, :, None] / dim_t |
|
pos_z = z_embed[:, :, :, :, None] / dim_t |
|
pos_x = torch.stack((pos_x[:, :, :, :, 0::2].sin(), pos_x[:, :, :, :, 1::2].cos()), dim=5).flatten(4) |
|
pos_y = torch.stack((pos_y[:, :, :, :, 0::2].sin(), pos_y[:, :, :, :, 1::2].cos()), dim=5).flatten(4) |
|
pos_z = torch.stack((pos_z[:, :, :, :, 0::2].sin(), pos_z[:, :, :, :, 1::2].cos()), dim=5).flatten(4) |
|
pos = torch.cat((pos_z, pos_y, pos_x), dim=4).permute(0, 1, 4, 2, 3) |
|
return pos |
|
|
|
|
|
|
|
def build_position_encoding(args): |
|
|
|
N_steps = args.hidden_dim // 2 |
|
if args.position_embedding in ('v2', 'sine'): |
|
|
|
position_embedding = PositionEmbeddingSine2D(N_steps, normalize=True) |
|
else: |
|
raise ValueError(f"not supported {args.position_embedding}") |
|
|
|
return position_embedding |
|
|
|
|